DOI QR코드

DOI QR Code

고효율 태양전지용 a-IZO 박막의 전기적 및 광학적 특성 최적화에 관한 연구

Optimization of Electrical and Optical Properties of a-IZO Thin Film for High-Efficiency Solar Cells

  • 박소민 ( 성균관대학교 전자전기컴퓨터공학과) ;
  • 정성진 ( 성균관대학교 전자전기컴퓨터공학과) ;
  • 최지원 ( 성균관대학교 전자전기컴퓨터공학과) ;
  • 김영국 ( 성균관대학교 정보통신대학) ;
  • 이준신 ( 성균관대학교 정보통신대학)
  • Somin, Park (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Sungjin, Jeong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jiwon, Choi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youngkuk, Kim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin, Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2022.10.01
  • 심사 : 2022.10.17
  • 발행 : 2023.01.01

초록

The deposition of indium zinc oxide (IZO) thin films was carried out on substrate at room temperature by RF magnetron sputtering. The effects of substrate temperature, RF power and deposition pressure were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, structure, and transmittance. As the RF power increases, the resistivity gradually decreases, and the transmittance slightly decreases. For the variation of deposition pressure, the resistivity greatly increases, and the transmittance is decreased with increasing deposition pressure. As a result, it was demonstrated that an IZO film with the resistivity of 3.89 × 10-4 Ω∙cm, the hole mobility of 51.28 cm2/Vs, and the light transmittance of 86.89% in the visible spectrum at room temperature can be prepared without post-deposition annealing.

키워드

과제정보

본 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 (과제번호: 20213030010240, 대면적 결정질/박막 실리콘 이종접합(HJT) 태양광 모듈 핵심소재.장비.공정 기술 개발)과 2022년도 한국에너지기술평가원의 (과제번호: 20224000000360, 태양전지 모듈 중견기업 특화 인력양성) 과제연구비에 의해 지원되었음.

참고문헌

  1. S. Kim, T. T. Trinh, J. Park, D. P. Pham, S. Lee, H. B. Do, N. N. Dang, V.-A. Dao, J. Kim, and J. Yi, Sci. Rep., 11, 15524 (2021). [DOI: https://doi.org/10.1038/s41598-021-94848-4]
  2. H. Shen, D. Walter, Y. Wu, K. C. Fong, D. A. Jacobs, T. Duong, J. Peng, K. Weber, T. P. White, and K. R. Catchpole Adv. Energy Mater., 10, 1902840 (2020). [DOI: https://doi.org/10.1002/aenm.201902840]
  3. H. H. Park, Electron. Mater. Lett., 17, 18 (2021). [DOI: https://doi.org/10.1007/s13391-020-00259-4]
  4. A. Sharmin, S. Tabassum, M. S. Bashar, and Z. H. Mahmood, J. Theoretical and Applied Physics, 13, 123 (2019). [DOI: https://doi.org/10.1007/s40094-019-0329-0]
  5. X. Ji, J. Song, T. Wu, Y. Tian, B. Han, X. Liu, H. Wang, Y. Gui, Y. Ding, and Y. Wang, Sol. Energy Mater. Sol. Cells, 190, 6 (2019). [DOI: https://doi.org/10.1016/j.solmat.2018.10.009]
  6. M. Schultes, T. Helder, E. Ahlswede, M. F. Ayguler, P. Jackson, S. Paetel, J. A. Schwenzer, I. M. Hossain, U. W. Paetzold, and M. Powalla, ACS Appl. Energy Mater., 2, 7823 (2019). [DOI: https://doi.org/10.1021/acsaem.9b01224].
  7. J. S. Jang, J. Kim, U. Ghorpade, H. H. Shin, M. G. Gang, S. D. Park, H. J. Kim, D. S. Lee, and J. H. Kim, J. Alloys Compd., 793, 499 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.04.042]
  8. H. Park, Y. J. Lee, J. Park, Y. Kim, J. Yi, Y. Lee, S. Kim, C. Park, and K. J. Lim, Trans. Electr. Electron. Mater., 19, 165 (2018). [DOI: https://doi.org/10.1007/s42341-018-0026-8]
  9. A. Cruz, E. C. Wang, A. B. Morales-Vilches, D. Meza, S. Neubert, B. Szyszka, R. Schlatmann, and B. Stannowski, Sol. Energy Mater. Sol. Cells, 195, 339 (2019). [DOI: https://doi.org/10.1016/j.solmat.2019.01.047]
  10. J. Haschke, R. Lemerle, B. Aissa, A. A. Abdallah, M. M. Kivambe, M. Boccard, and C. Ballif, IEEE J. Photovolt., 9, 1202 (2019). [DOI: https://doi.org/10.1109/JPHOTOV.2019.2924389]
  11. A. Abdulkadir, A. A. Aziz, and M. Z. Pakhuruddin, Results in Physics, 19, 103405 (2020). [DOI: https://doi.org/10.1016/j.rinp.2020.103405].
  12. E. Donercark, S. Guler, E. H. Ciftpinar, I. Kabacelik, M. Koc, A. C. Ercelebi, and R. Turan, Mater. Sci. Eng.,: B, 281, 115750 (2022). [DOI: https://doi.org/10.1016/j.mseb.2022.115750]
  13. L. Lin and N. M. Ravindra, SN Applied Sciences, 2, 1 (2020). [DOI: https://doi.org/10.1007/s42452-020-3169-2]
  14. Z. Ying, Y. Zhu, X. Feng, J. Xiu, R. Zhang, X. Ma, Y. Deng, H. Pan, and Z. He, Advanced Materials Interfaces, 8, 2001604 (2021). [DOI: https://doi.org/10.1002/admi.202001604]
  15. T. Wahl, J. Hanisch, S. Meier, M. Schultes, and E. Ahlswede, Org. Electron., 54, 48 (2018). [DOI: https://doi.org/10.1016/j.orgel.2017.12.020]
  16. Y. H. Chiang, C. C. Peng, Y. H. Chen, Y. L. Tung, S. Y. Tsai, and P. Chen, J. Phys. D: Appl. Phys., 51, 424002 (2018). [DOI: https://doi.org/10.1088/1361-6463/aad71c]
  17. W. J. Lee, D. H. Cho, Y. D. Kim, M. W. Choi, J. C. Choi, and Y. D. Chung, J. Alloys Compd., 806, 976 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.07.321]
  18. Y. J. Noh, J. G. Kim, S. S. Kim, H. K. Kim, and S. I. Na, J. Power Sources, 437, 226894 (2019). [DOI: https://doi.org/10.1016/j.jpowsour.2019.226894]
  19. P. lei, X. Chen, Y. yan, J. Peng, C. Hao, J. Ji, Z. Huo, Vacuum, 195, 110645 (2022). [DOI: https://doi.org/10.1016/j.vacuum.2021.110645]
  20. A, Cruz, D. Erfurt, P. Wagner, A. B. Morales-Vilches, F. Ruske, R. Schlatmann, and B. Stannowski, Sol. Energy Mater. Sol. Cells, 236, 111493 (2022). [DOI: https://doi.org/10.1016/j.solmat.2021.111493]
  21. K. Liu, B. Chen, J. Y. Zhengshan, Y. Wu, Z. Huang, X. Jia, C. Li, D. Spronk, Z. Wang, Z. Wang, S. Qu, Z. C. Holman, and J. Huang, J. Mater. Chem. A, 10, 1343 (2022). [DOI: https://doi.org/10.1039/d1ta09143c]
  22. M. G. Sousa and A. F. Da Cunha, Appl. Surf. Sci., 484, 257 (2019). [DOI: https://doi.org/10.1016/j.apsusc.2019.03.275]
  23. Z. Wu, W. Duan, A. Lambertz, D. Qiu, M. Pomaska, Z. Yao, U. Rau, L. Zhang, Z. Liu, and K. Ding, Applied Surface Science, 542, 148749 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2020.148749]
  24. C. Messmer, L. Tutsch, S. Pingel, D. Erath, J. Schon, A. Fell, J. C. Goldschmidt, B. S. Goraya, F. Clement, A. Lorenz, S. Nold, M. Bivour, S. W. Glunz, and M. Hermle, Progress in Photovoltaics: Research and Applications, 30, 374 (2022). [DOI: https://doi. org/10.1002/pip.3491]