DOI QR코드

DOI QR Code

LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis

오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법

  • In Seon Kim (Natural Product Research Center and Natural Product Central Bank, KRIBB) ;
  • Seon Min Oh (Natural Product Research Center and Natural Product Central Bank, KRIBB) ;
  • Ha Eun Song (Natural Product Research Center and Natural Product Central Bank, KRIBB) ;
  • Doo-Young Kim (Natural Product Research Center and Natural Product Central Bank, KRIBB) ;
  • Dahye Yoon (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Dae Young Lee (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA) ;
  • Hyung Won Ryu (Natural Product Research Center and Natural Product Central Bank, KRIBB)
  • Received : 2023.11.08
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

Schisandra chinensis (S. chinensis) is a deciduous broad-leaved cave plant belonging to the Schisandraceae family and is widely distributed in East Asia including Korea, Japan, China, and Taiwan. It has been reported that the main components contained in S. chinensis include lignan compounds and triterpenoid compounds. To distinguish the characteristics of S. chinensis by production region of Korea, a discriminant was established by performing metabolite profiling and principal component analysis, a multivariate statistical analysis technique. As a result, 16 types of triterpenoids, 9 types of lignan, and 1 type each of flavonoid, phenylpropanoid, and fatty acid were identified. In addition, through multivariate statistical analysis, it was confirmed that the four groups in Danyang, Moongyeong, Geochang, and Pyeongchang were divided, by applying the s-plot model of orthogonal partial least squares discriminant analysis. Biomarkers were identified: lanostane, cycloartane, schiartane triterpenoid, and dibenzocyclo-octadiene lignan were identified as chemical markers, respectively.

오미자(Schisandra chinensis)는 오미자과에 속하는 낙엽활엽덩굴식물로 한국, 일본, 중국, 대만 등 동아시아에 널리 분포한다. 오미자에 함유된 주요 성분에는 리그난 화합물뿐만 아니라 트리테르페노이드 화합물도 포함되어 있는 것으로 보고되었다. 한국 산지별 오미자의 특성을 구별하기 위해 대사산물 프로파일링과 다변량 통계 분석 기법인 PCA을 수행하여 판별식을 설정하였고, 그 결과 triterpenoids 16종, lignan 9종, flavonoid, phenylpropanoid, fatty acid 각 1종을 동정하였다. 또한 다변량 통계분석을 통해 OPLS-DA의 s-plot 모델을 적용하여 단양, 문경, 거창, 평창의 4개 그룹을 구분하는 것을 확인하였고, lanostane, cycloartane, 그리고 schiartane triterpenoid, dibenzocyclooctadiene lignan 이 각각 화학적마커로 동정하였다.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 공동연구사업(RS-2019-RD008923)의 지원에 의해 이루어진 것입니다. 지원에 감사드립니다.

References

  1. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8(2): 470-481 https://doi.org/10.1039/C1MB05350G
  2. Kim SH, Yang SO, Kim KH, Kim YS, Liu KH, Yoon YR, Lee D, Lee CH, Hwang GS, Chung MW, Choi KH (2009) Research trends, applications, and domestic research promotion strategies of metabolomics. KSBB J 24(2): 113-121
  3. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137(2): 293-300 https://doi.org/10.1039/C1AN15605E
  4. Zhang XJ, Qiu JF, Guo LP, Wang Y, Li P, Yang FQ, Su H, Wan JB (2013) Discrimination of multi-origin chinese herbal medicines using gas chromatography-mass spectrometry-based fatty acid profiling. Molecules 18(12): 15329-15343. doi: 10.3390/molecules181215329
  5. Leem JY (2016) Discrimination Model of Cultivation Area of Alismatis Rhizoma using a GC-MS-Based Metabolomics Approach. Yakhak Hoeji 60(1): 29-35. doi: 10.17480/psk.2016.60.1.29
  6. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev 2(4): 433-459 https://doi.org/10.1002/wics.101
  7. Oh SM, Kim DY, Lee SY, Song HE, Kim IS, Seo WD, Lee JH, Oh SR, Lee DY, Ryu HW (2023) Comparisons of phenolic compounds and antioxidant activities during different growth stages in Artemisia gmelinii Weber ex Stechm with UPLC-QTOF/MS based on a metabolomics approach. Ind Crops Prod 202. doi: 10.1016/j.indcrop.2023.116999
  8. Hyun KH, Kim HJ, Jeong HC (2002) A Study on Determining Chemical Compositions of Schizandra chinensis. Korean J Medicinal Crop Sci 15(1): 1-7
  9. Kim CH, Kwon MC, Kim HS, Ahn JH, Choi GP, Choi YB, Ko JR, Lee HY (2007) Enhancement of Immune Activities of Kadsura Japonica Dunal. through Conventional Fermentation Process. Korean J Medicinal Crop Sci 15(3): 162-169
  10. Gardening Industry Division, MAFRA (2022) Special Crop Production Performance. MAFRA, Sejong city, pp 8-23
  11. Chung KH, Lee SH, Lee YC, Kim JT (2001) Antimicrobial Activity of Omija (Schizandra chinensis) Extracts. J Korean Soc Food Sci Nutr 30(1): 127-132
  12. Kim MS, Sung HJ, Park JY, Sohn HY (2017) Evaluation of Antioxidant, Anti-microbial and Anti-thrombosis Activities of Fruit, Seed and Pomace of Schizandra chinensis Baillon. J Life Sci 27(2): 131-138. doi: 10.5352/JLS.2017.27.2.131
  13. Min HY, Park EJ, Hong JY, Kang YJ, Kim SJ, Chung HJ, Woo ER, Hung TM, Youn UJ, Kim YS, Kang SS, Bae KH, Lee SK (2008) Antiproliferative effects of dibenzocyclooctadiene lignans isolated from Schisandra chinensis in human cancer cells. Bioorganic Med Chem Lett 18(2): 523-526. doi: 10.1016/j.bmcl.2007.11.082
  14. Lee Y, Lee HS, Jang SJ, Song JH (2015) Effect of Water Extract of Schisandra Chinensis on Osteoclast Differentiation. J Physiol & Pathol Korean Med 25(5): 848-853
  15. Kortesoja M, Karhu E, Olafsdottir ES, Freysdottir J, Hanski L (2019) Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic Biol Med 131: 309-317. doi: 10.1016/j.freeradbiomed.2018.12.019
  16. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2018) An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 97: 958-968. doi: 10.1016/j.biopha.2017.10.145
  17. Kwon DY, Kim DS, Yang HJ, Park S (2011) The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-γ pathways in in vitro and in vivo studies. J Ethnopharmacol 135(2): 455-462. doi: 10.1016/j.jep.2011.03.037
  18. Koo DC, Suh WS, Baek SY, Shim SH (2011) Quantitative Determination of Lignans from Schizandra chinensis by HPLC. Kor J Pharmacogn 42(3): 233-239
  19. Hung TM, Na MK, Min BS, Ngoc TM, Lee IS, Zhang XF, Bae KH (2007) Acetylcholinesterase Inhibitory Effect of Lignans Isolated from Schizandra chinensis. Arch Pharm Res 230(6): 685-690. doi: 10.1007/BF02977628
  20. Kim YE, Kim EN, Jeong GS (2019) Isolation and Quantitative Analysis of Schisandrin, Gomisin A and Gomisin M2 From Schisandra chinensis. KorJ Pharmacogn 50(2): 148-153
  21. Liu H, Lai H, Jia X, Liu J, Zhang Z, Qi Y, Zhang J, Song, J, Wu C, Zhang B, Xiao P (2013) Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 20(12): 1135-1143. doi: 10.1016/j.phymed.2013.05.001
  22. Lee HJ, Cho IH, Lee KE, Kim YS (2011) The compositions of volatiles and aroma-active compounds in dried omija fruits (Schisandra chinensis baillon) according to the cultivation areas. J Agric Food Chem 59(15): 8338-8346. doi: 10.1021/jf200762h
  23. Yang S, Shan L, Luo H, Sheng X, Du J, Li Y (2017) Rapid classification and identification of chemical components of Schisandra chinensis by UPLC-Q-TOF/MS combined with data post-processing. Molecules 22(10): 1778. doi: 10.3390/molecules22101778
  24. Godzien J, Ciborowski M, Angulo S, Barbas C (2013) From numbers to a biological sense: How the strategy chosen for metabolomics data treatment may affect final results. A practical example based on urine fingerprints obtained by LC-MS. Electrophoresis. 34: 2812-2826. doi: 10.1002/elps.201300053
  25. Bijisma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, Ommen BV, Smilde AK (2006) Large-Scale Human Metabolomics Studies: A Strategy for Data (Pre-) Processing and Validation. Anal Chem 78: 567-574. doi: 10.1021/ac051495j
  26. Xue YB, Zhang YL, Yang JH, Du X, Pu JX, Zhao W, Li XN, Xiao WL, Sun HD (2010) Nortriterpenoids and Lignans from the Fruit of Schisandra chinensis. Chem Pharm Bull 58(12): 1606-1611. doi: 10.1248/cpb.58.1606
  27. Xu H, Wang W, Sun Y, Li Y, Jiang Y, Deng C, Song X, Zhang D (2023) A systematic review on triterpenoids from genus Schisandra: Botany, traditional use, pharmacology and modern application. Arab J Chem 16(105178): 1-32. doi: 10.1016/j.arabjc.2023.105178
  28. Yang S, Yuan C (2021) Schisandra chinensis: A comprehensive review on its phytochemicals and biological activities. Arab J Chem 14(9): 103310. doi: 10.1016/j.arabjc.2021.103310
  29. Mocan A, Schafberg M, Crisan G, Rohn S (2016) Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J Funct Foods 24: 579-594. doi: 10.1016/j.jff.2016.05.007
  30. Szopa A, Dziurka M, Warzecha A, Kubica P, Klimek-Szczykutowicz M, Ekiert H (2018) Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules 23(12): 3103. doi: 10.3390/molecules23123103
  31. Huang SX, Han Q Bin, Lei C, Pu JX, Xiao WL, Yu JL, Yang LM, Xu HX, Zheng YT, Sun HD (2008) Isolation and characterization of miscellaneous terpenoids of Schisandra chinensis. Tetrahedron 64(19): 4260-4267. doi: 10.1016/j.tet.2008.02.085
  32. Lei C, Huang SX, Chen JJ, Yang LB, Xiao WL, Chang Y, Lu Y, Huang H, Pu JX, Sun HD (2008) Propindilactones E-J, schiartane nortriterpenoids from Schisandra propinqua var. propinqua. J Nat Prod. 71(7): 1228-1232. doi: 10.1021/np8001699
  33. Liu J, Mu X, Liang J, Zhang J, Qiang T, Li H, Li B, Liu H, Zhang B (2022) Metabolic profiling on the analysis of different parts of Schisandra chinensis based on UPLC-QTOF-MS with comparative bioactivity assays. Front Plant Sci 13(970535): 1-16. doi: 10.3389/fpls.2022.970535
  34. Oliw EH, Su C, Skogstrom T, Benthin G (1998) Analysis of novel hydroperoxides and other metabolites of oleic, linoleic, and linolenic acids by liquid chromatography-mass spectrometry with ion trap MSn. Lipids 33(9): 843-852. doi: 10.1007/s11745-998-0280-0
  35. Liao X, Hu F, Chen Z (2019) A HPLC-MS method for profiling triterpenoid acids and triterpenoid esters in: Osmanthus fragrans fruits. Analyst 144(23)