DOI QR코드

DOI QR Code

Anti-adipogenic activity of Smilax sieboldii extracts in 3T3-L1 adipocytes

3T3-L1 지방전구세포에서 청가시덩굴 추출물의 항비만 활성

  • Seohyun Park (Bio Industry Department, Gyeonggido Business and Science Accelerator) ;
  • Jung A Lee (Bio Industry Department, Gyeonggido Business and Science Accelerator) ;
  • Seong Su Hong (Bio Industry Department, Gyeonggido Business and Science Accelerator) ;
  • Eun-Kyung Ahn (Bio Industry Department, Gyeonggido Business and Science Accelerator)
  • Received : 2023.06.30
  • Accepted : 2023.09.10
  • Published : 2023.12.31

Abstract

Smilax sieboldii is one of the Smilax species. A number of Smilax plants have multiple physiologically-active components and anti-inflammatory/anti-oxidant effects. Antiobesity effects induced by Smilax sieboldii have not been reported. In this study, we investigated the effects and molecular mechanisms of anti-obesity activity of 70% ethanol Smilax sieboldii extract (SSE). The anti-obesity effect of SSE was determined using 3T3-L1 adipocytes. We confirmed that SSE was not cytotoxic to murine 3T3-L1 preadipocytes, we evaluated SSE dose-dependently decreased the accumulation of lipids via an Oil Red O assay and triglyceride assay. These anti-obesity activities of SSE were mediated by the inhibition of adipogenesis-related marker genes (peroxisome proliferator activated receptor-γ, CCAAT-enhancer-binding protein α, and SREBP1c) and lipogenesis-related marker genes (fatty acid synthase and aP2). These results suggest that SSE has the potential to exert anti-obesity and anti-hyperlipidemia effects by regulating adipogenic transcription factors and inhibiting the expression of adipogenic markers.

본 연구는 청가시덩굴 에탄올 추출물을 이용하여 3T3-L1 지방전구세포에서 지방세포를 통해 항비만 활성을 확인하고자 하였다. 청가시덩굴 에탄올 추출물에 의한 지방세포 분화 억제 활성 및 지방형성에 미치는 영향을 확인하기 위해 3T3-L1 지방전구세포에 분화를 유도하여 추출물을 농도별로 처리하였다. 그 결과 청가시덩굴 에탄올 추출물 처리 시 지방세포 분화 및 세포 내 중성지방 축적 수준이 농도 의존적으로 감소하였다. 이러한 지방형성 억제 효과가 어떠한 작용기전에 의해 유도되는지 확인하기 위해 청가시덩굴 추출물과 그로부터 분리된 화합물인 acertannin을 이용하여 지방세포 분화 조절인자들의 유전자 및 단백질 발현을 확인하고자 하였다. 청가시덩굴 에탄올 추출물은 지방형성 및 지방산 합성 관련 인자인 PPARγ, C/EBPα, ADD1/SREBP1c, FAS, aP2의 유전자 및 단백질 발현을 유의적으로 억제하였다. 이러한 결과들로 볼 때 청가시덩굴 에탄올 추출물은 지방세포분화 및 지방축적 인자의 조절 효과를 나타냄으로써 산림자원의 항비만 및 고지혈증 개선 기능성 소재로의 활용 가능성을 확인하였다.

Keywords

Acknowledgement

본 연구과제는 산림청(한국임업진흥원) 산림과학기술 연구개발사업(Project No. 2021371B10-2323-BD02)의 지원에 의하여 이루어진 것입니다.

References

  1. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316(2): 129-139. doi: 10.1016/j.mce.2009.08.018 
  2. Korea Centers for Disease Control & Prevention (2021) Korea Health Statistics 2021: Korea National Health and Nutrition Examination Survey. KNHANES VIII-3, Cheongju 
  3. Corral I, Landrine H, Hao Y, Zhao L, Mellerson JL, Cooper DL (2012) Residential segregation, health behavior and overweight/obesity among a national sample of African American adults. J Health Psychol 17(3): 371-378. doi: 10.1177/1359105311417191 
  4. Teixeira PJ, Marques MM (2017) Health Behavior Change of Obesity Management. Obes Facts 10(6): 666-673. doi: 10.1159/000484933 
  5. Brun RP, Spiegelman BM (1997) Obesity and the adipocyte PPARγ and the molecular control of adipogenesis. Differentiation 83: 813-819 
  6. Murugan DD, Balan D, Wong PF (2021) Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 35: 5936-5960  https://doi.org/10.1002/ptr.7205
  7. Park MJ (2005) Recent Advances in Regulating Energy Homeostasis and Obesity. Korean J Pediatr 48: 126-137 
  8. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231(3): R77-R99. doi: 10.1530/JOE-16-0211 
  9. Jeon JH, Cho MS, Yun SA, Gil HY, Kim SH, Kwon Y, Seo HS, Shukhertei A, Kim SC (2021) Vascular plant diversity of Gwangdeoksan Mountain (Cheonan-Asan, Korea): insights into ecological and conservation importance. Korean J PI Taxon 51(1): 49-99  https://doi.org/10.11110/kjpt.2021.51.1.49
  10. Kim JY, Seoung GU, Chung SK (2014) Antioxidant and Antimicrobial Effects of Solvent Fractions from Smilax china L. Leaves. Korean Soc Food Sci Nutr 43(10): 1614-1618  https://doi.org/10.3746/jkfn.2014.43.10.1614
  11. Kim KK, Kang YH, Kim DJ, Kim TW, Choe M (2013) Comparison of antioxidant, α-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts of Smilax china L. J Nutr Health 46(4): 315-323  https://doi.org/10.4163/jnh.2013.46.4.315
  12. Kang YH, Lee YS, Kim KK, Kim DJ, Kim TW, Choe M (2013) Study on antioxidative, antidiabetic and antiobesity activity of solvent fractions of Smilax china L. leaf extract. J Nutr Health 46(5): 401-409  https://doi.org/10.4163/jnh.2013.46.5.401
  13. Lee CB (2003) Coloured Flora of Korea. Hyangmunsa, Seoul 
  14. Kim JS, Kim TY (2011) Korean tree. Dolbegae, Paju 
  15. Woo MH, Do JC, Son KH (1992) Five new spirostanol glycosides from the subterranean parts of Smilax sieboldii. J Nat Prod 55: 1129-1135  https://doi.org/10.1021/np50086a015
  16. Kubo S, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T (1992) Steroidal saponins from the rhizomes of Smilax sieboldii. Phytochemistry 31: 2445-2450  https://doi.org/10.1016/0031-9422(92)83296-B
  17. Kwon JG, Jung YW, Choi YH, Lee JE, Jeong WS, Lee JA, Choi CW, Ahn EK, Choi Y, Hong SS (2022) Development and validation of an analytical method for the detection of resveratrol and trans-scirpusin A as functional ingredients Smilax sieboldii extract. J Korean Soc Food Sci Nutr 51(11): 1171-1177  https://doi.org/10.3746/jkfn.2022.51.11.1171
  18. Jung YW, Lee JA, Lee JE, Cha H, Choi YH, Jeong W, Choi CW, Oh JS, Ahn EK, Hong SS (2023) Anti-adipogenic activity of secondary metabolites isolated from Smilax sieboldii Miq. on 3T3-L1 adipocytes. Int J Mol Sci 24(10): 8866 
  19. Lee JA, Hwang MH, Cho YR, Ahn EK (2022) Assessment of the 4-week repeated dose oral toxicity test of Smilax sieboldii extract in ICR mice. J Appl Biol Chem 65(4): 1-7  https://doi.org/10.3839/jabc.2022.051
  20. Honma A, Koyama T, Yazawa K (2010) Anti-hyperglycemic effects of sugar maple Acer saccharum and its constituent acertannin. Food Chem 123: 390-394  https://doi.org/10.1016/j.foodchem.2010.04.052
  21. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: Tracking obesity to its source. Cell 131: 242-256  https://doi.org/10.1016/j.cell.2007.10.004
  22. Khor VK, Shen WJ, Kraemer FB (2013) Lipid droplet metabolism. Curr Opin Clin Nutr Metab Care 16: 632-637  https://doi.org/10.1097/MCO.0b013e3283651106
  23. Welte MA, Gould AP (2017) Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 1862: 1260-1272  https://doi.org/10.1016/j.bbalip.2017.07.006
  24. Fujimoto T, Parton RG (2011) Not just fat: The structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3: a004838 
  25. Talayero BG, Sacks FM (2011) The role of triglycerides in atherosclerosis. Curr Cardiol Rep 13: 544-552  https://doi.org/10.1007/s11886-011-0220-3
  26. Gotto Jr AM (1998) Triglyceride: The forgotten risk factor. Circulation 97: 1027-1028.  https://doi.org/10.1161/01.CIR.97.11.1027
  27. Kim JB, Park JY (2002) Molecular insights into fat cell differentiation and functional roles of adipocytokines. J Korean Soc Endo 17: 1-9 
  28. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: Transcriptional mediators of lipid homeostasis. Cold Spring Harb Sym 67: 491-498  https://doi.org/10.1101/sqb.2002.67.491
  29. Lefterova MI, Zhang Y, Steger DJ (2008) PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22: 2941-2952  https://doi.org/10.1101/gad.1709008
  30. White UA, Stephens JM (2010) Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol 318: 10-14  https://doi.org/10.1016/j.mce.2009.08.023
  31. Tontonoz P, Hu E, Spiegelman BM (1995) Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ. Curr Opin Genet Dev 5(5): 571-576  https://doi.org/10.1016/0959-437X(95)80025-5
  32. Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14(1): 99-129  https://doi.org/10.1146/annurev.nu.14.070194.000531
  33. Kralisch S, Fasshauer M (2013) Adipocyte fatty acid binding protein: A novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 56: 10-21  https://doi.org/10.1007/s00125-012-2737-4
  34. Williams DM, Nawaz A, Evans M (2020) Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther 11: 1199-1216  https://doi.org/10.1007/s13300-020-00816-y
  35. Jung SW, Choi SE (2018) Modulative Effect of Human Hair Dermal Papilla Cell Apoptosis by Acertannin from the Barks and Xylems of Acer ginnala Maxim. Korean Journal of Pharmacognosy 49: 7-14 
  36. Menu Neelaka Molagoda I, Arachchilage Hasitha Maduranga Karunarathne W, Lee MH, Kang CH, Tae Lee K, Hyun Choi Y, Lee S, Kim GY (2022) Acertannin attenuates LPS-induced inflammation by interrupting the binding of LPS to the TLR4/MD2 complex and activating Nrf2-mediated HO-1 activation. Int Immunopharmacol 113: 109344 
  37. Kimura Y, Taniguchi M, Okuda T (2023) Acertannin Prevented Dextran Sulfate Sodium-induced Colitis by Inhibiting the Colonic Expression of IL-23 and TNF-α in C57BL/6J Mice. Planta Med 89(7): 746-753 https://doi.org/10.1055/a-2037-2995