DOI QR코드

DOI QR Code

Antibacterial and virucidal activity of 28 extracts from plants endemic to Korea against Bacillus cereus, Staphylococcus aureus, and murine norovirus

  • Hyun-Joo Chang (Research Group of Food Safety and Distribution, Korea Food Research Institute) ;
  • Ji Hye Han (Research Group of Food Safety and Distribution, Korea Food Research Institute) ;
  • Nari Lee (Research Group of Food Safety and Distribution, Korea Food Research Institute) ;
  • Sung-Wook Choi (Research Group of Food Safety and Distribution, Korea Food Research Institute)
  • Received : 2023.07.07
  • Accepted : 2023.08.16
  • Published : 2023.12.31

Abstract

Antibacterial activity against foodborne bacteria (Bacillus cereus, Staphylococcus aureus, Salmonella Enteritidis) and inhibitory activity against murine norovirus, a human norovirus surrogate, of 28 extracts from plants endemic to Korea were investigated in this study. All plant extracts showed antibacterial activity only against gram-positive bacteria, B. cereus and S. aureus. Extracts from Callistemon speciosus and Nymphaea tetragona showed inhibition zones of 16.54 and 24.35 mm against B. cereus and S. aureus, respectively, presenting the highest antibacterial activities recorded in this study. Among all samples, Ardisia japonica extract at concentrations of 100 and 200 ㎍/mL showed the highest virucidal activities of 96.6 and 100.0%, respectively. Ardisia japonica, Duchesnea indica, Polygonum aviculare, and Geum japonicum extracts showed high antibacterial and virucidal activity simultaneously without Raw 264.7 cell cytotoxicity. These plant extracts may serve as potential antimicrobials to control foodborne infections.

Keywords

Acknowledgement

This research was supported by Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ016093) funded by Rural Development Administration, and Korea Food Research Institute (E0210701-03), Republic of Korea.

References

  1. Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T (2018) Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 285: 110-128. doi: 10.1016/j.ijfoodmicro.2018.06.001 
  2. Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Madrzak M, Choroszy-Krol (2021) Antiviral potential of plants against Noroviruses. Molecules 26: 4669, 1-29. doi: 10.3390/molecules26154669 
  3. Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL (2021) A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front Pharmacol 11: 586548, 1-29. doi: 10.3389/fphar.2020.586548 
  4. World Health Organization (2018) WHO Estimates of the global burden of foodborne disease; World Health Organization; Geneva, Switzerland https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases. Accessed 7 July 2023 
  5. Ministry of Food and Drug Safety (2023) Food poisoning statistics. Food Safety Korea Web. https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=3724&menu_grp=MENU_NEW02. Accessed 7 July 2023 
  6. Scharff RI (2015) State estimates for the annual cost of foodborne illness. J Food Prot 78: 1064-1071. doi: 10.4315/0362-028X.JFP-14-505 
  7. Ullah F, Ayaz M, Sadiq A, Ullah F, Hussain I, Shahid M, Yessimbekov Z, Adhikari-Devkota A, Devkota HP (2020) Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl Sci 10: 4597, 1-35. doi: 10.3390/app10134597 
  8. Nikolova I, Paunova-Krasteva T, Petrova Z, Grozdanov P, Nikolova N, Tsonev G, Triantafyllidis A, Andreev S, Trepechova M, Milkova V, Vilhelmova-Ilieva N (2022) Bulgarian medicinal extracts as natural inhibitors with antiviral and antibacterial activity. Plants 11: 1666, 1-17. doi: 10.3390/plants11131666 
  9. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob Agents Chemother 55: 459-472. doi: 10.1128/AAC.00615-10 
  10. Stan D, Enciu A-M, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C (2021) Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front Pharmacol 12: 723233, 1-25. doi: 10.3389/fphar.2021.723233 
  11. Bhuiyan FR, Howlader S, Raihan T, Hasan M (2020) Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med 7: 444, 1-26. Doi: 10.3389/fmed.2020.00444 
  12. O'Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations: The review on antimicrobial resistance. Government of the United Kindom. https://apo.org.au/node/63983. Accessed 7 July 2023 
  13. Moraes Mello Boccolini P, Siqueira Boccolini C (2020) Prevalence of complementary and alternative medicine (CAM) use in Brazil. BMC Complement Med Ther 20: 51, 1-10. doi: 10.1186/s12906-020-2842-8 
  14. Todorov D, Hinkov A, Shishkova K, Shishkov S (2014) Antiviral potential of Bulgarian medicinal plants. Phytochem Rev 13: 525-538. doi: 10.1007/s11101-014-9357-1 
  15. Ehiri JE, Morris GP (1994) Food safety control strategies: A critical review of traditional approaches. Int J Environ Health Res 4: 254-263. doi: 10.1080/09603129409356824 
  16. Jun H, Kim J, Bang J, Kim H, Beuchat LR, Ryu J-H (2013) Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal. Int J Food Microbiol 160: 260-266. doi: 10.1016/j.ijfoodmicro.2012.10.020 
  17. Linde GA, Gazim ZC, Cardoso BK, Jorge LF, Tesevic V, Glamoclija J, Sokovic M, Colauto NB (2016) Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol Res 15: 1-11. doi: 10.4238/gmr.15038538 
  18. Tavakoli HR, Mashak Z, Moradi B, Sodagari HR (2015) Antimicrobial activities of the combined use of Cuminum cyminum L. essential oil, nisin and storage temperature against Salmonella Typhimurium and Staphylococcus aureus in vitro. Jundishapur J Microbiol 8: e24838, 1-7. doi: 10.5812/jjm.8(4)2015.24838 
  19. Monu EA, David JRD, Schmidt M, Davidson PM (2014) Effect of white mustard essential oil on the growth of foodborne pathogens and spoilage microorganisms and the effect of food components on its efficacy. J Food Prot 77: 2062-2068. doi: 10.4315/0362-028X.JFP-14-257 
  20. Park M-J, Choi W-S, Kang H-Y, Gwak K-S, Lee G-S, Jeung E-B, Choi I-G (2010) Inhibitory effect of the essential oil from Chamaecyparis obtusa on the growth of food-borne pathogens. J Microbiol 48: 496-501. doi: 10.1007/s12275-010-9327-2 
  21. Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK (2021) Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci 4: 8-54. doi: 10.1021/acsptsci.0c00174 
  22. Li H, Zhang Q, Jin X, Zou X, Wang Y, Hao D, Fu F, Jiao W, Zhang C, Lin H, Matsuzaki K, Zhao F (2018) Dysifragilone A inhibits LPS-induced Raw 264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol Med Rep 17: 674-682. doi: 10.3892/mmr.2017.7884 
  23. Mezhoudi M, Salem A, Abdelhedi O, Fakhfakh N, Mabrouk M, Khorchani T, Debeaufort F, Jridi M, Zouari N (2022) Development of active edible coatings based on fish gelatin enriched with Moringa oleifera extract: Application in fish (Mustelus mustelus) fillet preservation. Food Sci Nutr 10: 3979-3992. doi: 10.1002/fsn3.2993 
  24. Mohamat SA, Shueb RH, Mat NFC (2018) Anti-viral activities of Oroxylum indicum extracts on Chikungunya virus infection. Indian J Microbiol 58: 68-75. doi:10.1007/s12088-017-0695-8 
  25. Gonzalez-Hernandez MB, Cunha JB, Wobus CE (2012) Plaque assay for murine norovirus. J Vis Exp 66: e4297, 1-6. doi: 10.3791/4297 
  26. Hossain MA, Park J-Y, Kim J-Y, Suh J-W, Park S-C (2014) Synergistic effect and antiquorum sensing activity of Nymphaea tetragona (water lily) extract. BioMed Res Int 2014: 562173, 1-10. doi: 10.1155/2014/562173 
  27. Kowalski R, Kedzia B (2007) Antibacterial activity of Silphium perfoliatum extracts. Pharm Biol 45: 495-500. doi: 10.1080/13880200701389409 
  28. Kang C-G, Hah D-S, Kim C-H, Kim Y-H, Kim E, Kim J-S (2011) Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicol Res 27: 31-36. doi: 10.5487/TR.2011.27.1.031 
  29. Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E (2021) Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther 21: 2, 1-10. doi: 10.1186/s12906-020-03183-0 
  30. Mahida Y, Mohan JSS (2006) Screening of Indian plant extracts for antibacterial activity. Pharm Biol 44: 627-631. doi: 10.1080/13880200600897551 
  31. Nurul ZA, Darah I, Shaida SF, Nor SA (2010) Screening for antimicrobial activity of various extracts of Acanthophora spicifera (Rhodomelaceae, Ceramiales) from Malaysian waters. Res J Biol Sci 5: 368-375. doi: 10.3923/rjbsci.2010.368.375 
  32. Supardy NA, Ibrahim D, Sulaiman SF, Zakaria NA (2012) Inhibition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. J Microbiol Biotechnol 22: 872-881. doi: 10.4014/jmb.1111.11053 
  33. Ratledge C, Wilkinson SG (1988) An overview of microbial lipid. In: Gatledge C, Wilkinson SG (ed) Microbial lipids (Vol 1). Academic Press, Cambridge, USA, pp. 3-22 
  34. Inouye S, Takizawa J, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47: 565-573. doi: 10.1093/jac/47.5.565 
  35. Yang M, Lee G, Si J, Lee S-J, You HJ, Ko GP (2016) Curcumin shows antiviral properties against norovirus. Molecules 21: 1401, 1-14. doi: 10.3390/molecules21101401 
  36. Vinje J (2015) Advanced in laboratory methods for detection and typing of norovirus. J Clin Microbiol 53: 373-381. doi: 10.1128/JCM.01535-14 
  37. Wobus CE, Thackray LB, Virgin IV HW (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80: 5104-5112. doi: 10.1128/JVI.02346-05 
  38. Piacente S, Pizza C, De Tommasi N, Mahmood N (1996) Constituents of Ardisia japonica and their in vitro anti-HIV activity. J Nat Prod 59: 565-569. doi: 10.1021/np960074h 
  39. Dat NT, Bae KH, Wamiru A, McMahon JB, Le Grice SFJ, Bona M, Beutler JA, Kim YH (2007) A dimeric lactone from Ardisia japonica with inhibitory activity for HIV-1 and HIV-2 ribonuclease H. J Nat Prod 70: 839-841. doi: 10.1021/np060359m 
  40. Xu H-X, Zeng F-Q, Wan M, Sim K-Y (1996) Anti-HIV triterpene acids from Geum japonicum. J Nat Prod 59: 643-645. doi: 10.1021/np960165e 
  41. Solis-Sanchez D, Rivera-Piza A, Lee S, Kim J, Kim B, Choi JB, Kim YW, Ko GP, Song MJ, Lee S-J (2020) Antiviral effects of Lindera obtusiloba leaf extract on murine norovirus-1 (MNV-1), a human norovirus surrogate, and potential application to model foods. Antibiotics 9: 697, 1-14. doi: 10.3390/antibiotics9100697 
  42. Elizaquivel P, Azizkhani M, Aznar R, Sanchez G (2013) The effect of essential oils on norovirus surrogates. Food Control 32: 275-278. doi: 10.1016/j.foodcont.2012.11.031 
  43. Oh E-G, Kim K-L, Shin S-B, Son K-T, Lee H-J, Kim T-H, Kim Y-M, Cho E-J, Kim D-K, Lee E-W, Lee M-S, Shin I-S, Kim JH (2013) Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Sci Biotechnol 22: 593-598. doi: 10.1007/s10068-013-0119-4 
  44. Iloghalu U, Holmes B, Khatiwada J, Williams LL (2019) Selected plant extracts show antiviral effects against murine norovirus surrogate. Adv Microbiol 9: 372-384. doi: 10.4236/aim.2019.94022 
  45. Seo DJ, Choi C (2017) Inhibition of murine norovirus and feline calicivirus by edible herbal extracts. Food Environ Virol 9: 35-44. doi: 10.1007/s12560-016-9269-x 
  46. Aboubakr HA, Nauertz A, Luong NT, Agrawal S, El-Sohaimy SAA, Youssef MM, Goyal SM (2016) In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J Food Prot 79: 1001-1012. doi: 10.4315/0362-028X.JFP-15-593 
  47. Eggers M, Schwebke I, Suchomel M, Fotheringham V, Gebel J, Meyer B, Morace G, Roedger HJ, Roques C, Visa P, Steinhauer K (2021) The European tiered approach for virucidal efficacy testing-rationale for rapidly selecting disinfectants against emerging and re-emerging viral disease. Euro surveill 26: 2000708. doi: 10.2807/1560-7917.ES.2021.26.3.2000708 
  48. Ni Z-J, Wang X, Shen Y, Thakur K, Han J, Zhang J-G, Hu F, Wei Z-J (2021) Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 110: 78-89. doi: 10.1016/j.tifs.2021.01.070 
  49. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10: 354-367. doi: 10.1007/s13346-019-00691-6 
  50. Li D, Baert L, Uyttendaele M (2013) Inactivation of food-borne viruses using natural biochemical substances. Food Microbiol 35: 1-9. doi: 10.1016/j.fm.2013.02.009