Acknowledgement
This research was supported by Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ016093) funded by Rural Development Administration, and Korea Food Research Institute (E0210701-03), Republic of Korea.
References
- Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T (2018) Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 285: 110-128. doi: 10.1016/j.ijfoodmicro.2018.06.001
- Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Madrzak M, Choroszy-Krol (2021) Antiviral potential of plants against Noroviruses. Molecules 26: 4669, 1-29. doi: 10.3390/molecules26154669
- Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL (2021) A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front Pharmacol 11: 586548, 1-29. doi: 10.3389/fphar.2020.586548
- World Health Organization (2018) WHO Estimates of the global burden of foodborne disease; World Health Organization; Geneva, Switzerland https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases. Accessed 7 July 2023
- Ministry of Food and Drug Safety (2023) Food poisoning statistics. Food Safety Korea Web. https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=3724&menu_grp=MENU_NEW02. Accessed 7 July 2023
- Scharff RI (2015) State estimates for the annual cost of foodborne illness. J Food Prot 78: 1064-1071. doi: 10.4315/0362-028X.JFP-14-505
- Ullah F, Ayaz M, Sadiq A, Ullah F, Hussain I, Shahid M, Yessimbekov Z, Adhikari-Devkota A, Devkota HP (2020) Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl Sci 10: 4597, 1-35. doi: 10.3390/app10134597
- Nikolova I, Paunova-Krasteva T, Petrova Z, Grozdanov P, Nikolova N, Tsonev G, Triantafyllidis A, Andreev S, Trepechova M, Milkova V, Vilhelmova-Ilieva N (2022) Bulgarian medicinal extracts as natural inhibitors with antiviral and antibacterial activity. Plants 11: 1666, 1-17. doi: 10.3390/plants11131666
- Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob Agents Chemother 55: 459-472. doi: 10.1128/AAC.00615-10
- Stan D, Enciu A-M, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C (2021) Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front Pharmacol 12: 723233, 1-25. doi: 10.3389/fphar.2021.723233
- Bhuiyan FR, Howlader S, Raihan T, Hasan M (2020) Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med 7: 444, 1-26. Doi: 10.3389/fmed.2020.00444
- O'Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations: The review on antimicrobial resistance. Government of the United Kindom. https://apo.org.au/node/63983. Accessed 7 July 2023
- Moraes Mello Boccolini P, Siqueira Boccolini C (2020) Prevalence of complementary and alternative medicine (CAM) use in Brazil. BMC Complement Med Ther 20: 51, 1-10. doi: 10.1186/s12906-020-2842-8
- Todorov D, Hinkov A, Shishkova K, Shishkov S (2014) Antiviral potential of Bulgarian medicinal plants. Phytochem Rev 13: 525-538. doi: 10.1007/s11101-014-9357-1
- Ehiri JE, Morris GP (1994) Food safety control strategies: A critical review of traditional approaches. Int J Environ Health Res 4: 254-263. doi: 10.1080/09603129409356824
- Jun H, Kim J, Bang J, Kim H, Beuchat LR, Ryu J-H (2013) Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal. Int J Food Microbiol 160: 260-266. doi: 10.1016/j.ijfoodmicro.2012.10.020
- Linde GA, Gazim ZC, Cardoso BK, Jorge LF, Tesevic V, Glamoclija J, Sokovic M, Colauto NB (2016) Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet Mol Res 15: 1-11. doi: 10.4238/gmr.15038538
- Tavakoli HR, Mashak Z, Moradi B, Sodagari HR (2015) Antimicrobial activities of the combined use of Cuminum cyminum L. essential oil, nisin and storage temperature against Salmonella Typhimurium and Staphylococcus aureus in vitro. Jundishapur J Microbiol 8: e24838, 1-7. doi: 10.5812/jjm.8(4)2015.24838
- Monu EA, David JRD, Schmidt M, Davidson PM (2014) Effect of white mustard essential oil on the growth of foodborne pathogens and spoilage microorganisms and the effect of food components on its efficacy. J Food Prot 77: 2062-2068. doi: 10.4315/0362-028X.JFP-14-257
- Park M-J, Choi W-S, Kang H-Y, Gwak K-S, Lee G-S, Jeung E-B, Choi I-G (2010) Inhibitory effect of the essential oil from Chamaecyparis obtusa on the growth of food-borne pathogens. J Microbiol 48: 496-501. doi: 10.1007/s12275-010-9327-2
- Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK (2021) Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci 4: 8-54. doi: 10.1021/acsptsci.0c00174
- Li H, Zhang Q, Jin X, Zou X, Wang Y, Hao D, Fu F, Jiao W, Zhang C, Lin H, Matsuzaki K, Zhao F (2018) Dysifragilone A inhibits LPS-induced Raw 264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol Med Rep 17: 674-682. doi: 10.3892/mmr.2017.7884
- Mezhoudi M, Salem A, Abdelhedi O, Fakhfakh N, Mabrouk M, Khorchani T, Debeaufort F, Jridi M, Zouari N (2022) Development of active edible coatings based on fish gelatin enriched with Moringa oleifera extract: Application in fish (Mustelus mustelus) fillet preservation. Food Sci Nutr 10: 3979-3992. doi: 10.1002/fsn3.2993
- Mohamat SA, Shueb RH, Mat NFC (2018) Anti-viral activities of Oroxylum indicum extracts on Chikungunya virus infection. Indian J Microbiol 58: 68-75. doi:10.1007/s12088-017-0695-8
- Gonzalez-Hernandez MB, Cunha JB, Wobus CE (2012) Plaque assay for murine norovirus. J Vis Exp 66: e4297, 1-6. doi: 10.3791/4297
- Hossain MA, Park J-Y, Kim J-Y, Suh J-W, Park S-C (2014) Synergistic effect and antiquorum sensing activity of Nymphaea tetragona (water lily) extract. BioMed Res Int 2014: 562173, 1-10. doi: 10.1155/2014/562173
- Kowalski R, Kedzia B (2007) Antibacterial activity of Silphium perfoliatum extracts. Pharm Biol 45: 495-500. doi: 10.1080/13880200701389409
- Kang C-G, Hah D-S, Kim C-H, Kim Y-H, Kim E, Kim J-S (2011) Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicol Res 27: 31-36. doi: 10.5487/TR.2011.27.1.031
- Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E (2021) Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther 21: 2, 1-10. doi: 10.1186/s12906-020-03183-0
- Mahida Y, Mohan JSS (2006) Screening of Indian plant extracts for antibacterial activity. Pharm Biol 44: 627-631. doi: 10.1080/13880200600897551
- Nurul ZA, Darah I, Shaida SF, Nor SA (2010) Screening for antimicrobial activity of various extracts of Acanthophora spicifera (Rhodomelaceae, Ceramiales) from Malaysian waters. Res J Biol Sci 5: 368-375. doi: 10.3923/rjbsci.2010.368.375
- Supardy NA, Ibrahim D, Sulaiman SF, Zakaria NA (2012) Inhibition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. J Microbiol Biotechnol 22: 872-881. doi: 10.4014/jmb.1111.11053
- Ratledge C, Wilkinson SG (1988) An overview of microbial lipid. In: Gatledge C, Wilkinson SG (ed) Microbial lipids (Vol 1). Academic Press, Cambridge, USA, pp. 3-22
- Inouye S, Takizawa J, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47: 565-573. doi: 10.1093/jac/47.5.565
- Yang M, Lee G, Si J, Lee S-J, You HJ, Ko GP (2016) Curcumin shows antiviral properties against norovirus. Molecules 21: 1401, 1-14. doi: 10.3390/molecules21101401
- Vinje J (2015) Advanced in laboratory methods for detection and typing of norovirus. J Clin Microbiol 53: 373-381. doi: 10.1128/JCM.01535-14
- Wobus CE, Thackray LB, Virgin IV HW (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80: 5104-5112. doi: 10.1128/JVI.02346-05
- Piacente S, Pizza C, De Tommasi N, Mahmood N (1996) Constituents of Ardisia japonica and their in vitro anti-HIV activity. J Nat Prod 59: 565-569. doi: 10.1021/np960074h
- Dat NT, Bae KH, Wamiru A, McMahon JB, Le Grice SFJ, Bona M, Beutler JA, Kim YH (2007) A dimeric lactone from Ardisia japonica with inhibitory activity for HIV-1 and HIV-2 ribonuclease H. J Nat Prod 70: 839-841. doi: 10.1021/np060359m
- Xu H-X, Zeng F-Q, Wan M, Sim K-Y (1996) Anti-HIV triterpene acids from Geum japonicum. J Nat Prod 59: 643-645. doi: 10.1021/np960165e
- Solis-Sanchez D, Rivera-Piza A, Lee S, Kim J, Kim B, Choi JB, Kim YW, Ko GP, Song MJ, Lee S-J (2020) Antiviral effects of Lindera obtusiloba leaf extract on murine norovirus-1 (MNV-1), a human norovirus surrogate, and potential application to model foods. Antibiotics 9: 697, 1-14. doi: 10.3390/antibiotics9100697
- Elizaquivel P, Azizkhani M, Aznar R, Sanchez G (2013) The effect of essential oils on norovirus surrogates. Food Control 32: 275-278. doi: 10.1016/j.foodcont.2012.11.031
- Oh E-G, Kim K-L, Shin S-B, Son K-T, Lee H-J, Kim T-H, Kim Y-M, Cho E-J, Kim D-K, Lee E-W, Lee M-S, Shin I-S, Kim JH (2013) Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Sci Biotechnol 22: 593-598. doi: 10.1007/s10068-013-0119-4
- Iloghalu U, Holmes B, Khatiwada J, Williams LL (2019) Selected plant extracts show antiviral effects against murine norovirus surrogate. Adv Microbiol 9: 372-384. doi: 10.4236/aim.2019.94022
- Seo DJ, Choi C (2017) Inhibition of murine norovirus and feline calicivirus by edible herbal extracts. Food Environ Virol 9: 35-44. doi: 10.1007/s12560-016-9269-x
- Aboubakr HA, Nauertz A, Luong NT, Agrawal S, El-Sohaimy SAA, Youssef MM, Goyal SM (2016) In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J Food Prot 79: 1001-1012. doi: 10.4315/0362-028X.JFP-15-593
- Eggers M, Schwebke I, Suchomel M, Fotheringham V, Gebel J, Meyer B, Morace G, Roedger HJ, Roques C, Visa P, Steinhauer K (2021) The European tiered approach for virucidal efficacy testing-rationale for rapidly selecting disinfectants against emerging and re-emerging viral disease. Euro surveill 26: 2000708. doi: 10.2807/1560-7917.ES.2021.26.3.2000708
- Ni Z-J, Wang X, Shen Y, Thakur K, Han J, Zhang J-G, Hu F, Wei Z-J (2021) Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 110: 78-89. doi: 10.1016/j.tifs.2021.01.070
- Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 10: 354-367. doi: 10.1007/s13346-019-00691-6
- Li D, Baert L, Uyttendaele M (2013) Inactivation of food-borne viruses using natural biochemical substances. Food Microbiol 35: 1-9. doi: 10.1016/j.fm.2013.02.009