DOI QR코드

DOI QR Code

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran (Department of Plant Science and Technology, Chung-Ang University) ;
  • Hak-Dong Lee (Department of Plant Science and Technology, Chung-Ang University) ;
  • Sun-Hyung Kim (French Korean Aromatics Co., Ltd.) ;
  • Seok Lee (French Korean Aromatics Co., Ltd.) ;
  • Sanghyun Lee (Department of Plant Science and Technology, Chung-Ang University)
  • 투고 : 2023.06.14
  • 심사 : 2023.08.02
  • 발행 : 2023.12.31

초록

Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.

키워드

과제정보

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forest (IPET) through the Technology Commercialization Support Program funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number: 122052-3).

참고문헌

  1. Almeida MC, Sampaio GR, Bastos DHM, Villavicencio ALC (2018) Effect of gamma radiation processing on turmeric: Antioxidant activity and curcumin content. Radiat Phys Chem 152: 12-16. doi: 10.1016/j.radphyschem.2018.07.008 
  2. Hiserodt R, Hartman TG, Ho CT, Rosen RT (1996) Characterization of powdered turmeric by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. J Chromatogr A 740: 51-63. doi: 10.1016/0021-9673(96)00103-3 
  3. Goren AC, Cikrikci S, Cergel M, Bilsel G (2009) Rapid quantitation of curcumin in turmeric via NMR and LC-tandem mass spectrometry. Food Chem 113: 1239-1242. doi: 10.1016/j.foodchem.2008.08.014 
  4. Yang QQ, Cheng LZ, Zhang T, Yaron S, Jiang HX, Sui ZQ, Corke H (2020) Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind Crops Prod 152: 112561. doi: 10.1016/j.indcrop.2020.112561 
  5. Kim S, Kim M, Kang MC, Lee HHL, Cho CH, Choi I, Park Y, Lee SH (2021) Antioxidant effects of turmeric leaf extract against hydrogen peroxide-induced oxidative stress in vitro in vero cells and in vivo in zebrafish. Antioxidants 10: 112. doi: 10.3390/antiox10010112 
  6. Murthy HN, Paek KY (2021) Bioactive compounds in underutilized vegetables and legumes. Springer, Heidelberg 
  7. Jiang H, Timmermann BN, Gang DR (2006) Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J Chromatogr A 1111: 21-31. doi: 10.1016/j.chroma.2006.01.103 
  8. Liu Y, Siard M, Adams A, Keowen ML, Miller TK, Garza Jr F, Andrews FM, Seeram NP (2018) Simultaneous quantification of free curcuminoids and their metabolites in equine plasma by LC-ESI-MS/MS. J Pharm Biomed Anal 154: 31-39. doi: 10.1016/j.jpba.2018.03.014 
  9. Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY (2008) Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem 109: 477-483. doi: 10.1016/j.foodchem.2008.02.016 
  10. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B (2011) Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm Crop 2: 28-54. doi: 10.2174/2210290601102010028 
  11. Liu Y, Nair MG (2012) Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food Chem 135: 634-640. doi: 10.1016/j.foodchem.2012.04.129 
  12. Choi WY, Lee HY (2014) Enhancement of antioxidant activities of Curcuma longa leaves by ultra-high pressure extraction. Korean J Med Crop Sci 22: 121-126. doi: 10.7783/kjmcs.2014.22.2.121 
  13. Ilangovan M, Guna V, Hu C, Nagananda GS, Reddy N (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crops Prod 112: 556-560. doi: 10.1016/j.indcrop.2017.12.042 
  14. Yan SW, Asmah R (2010) Comparison of total phenolic contents and antioxidant activities of turmeric leaf, pandan leaf and torch ginger flower. Int Food Res J 17: 417-423 
  15. Ibukun O, Oluwadare EE (2021) In vitro antioxidant property and acute toxicity study of methanol extract of leaves of Zingiber officinale and Curcuma longa. Free Radic Antioxid 11: 42-45. doi: 10.5530/fra.2021.2.10 
  16. Braga MC, Vieira ECS, de Oliveira TF (2018) Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem 265: 308-315. doi: 10.1016/j.foodchem.2018.05.096 
  17. Kim S, Ko SC, Kim YS, Ha SK, Park HY, Park Y, Lee SH (2019) Determination of Curcuma longa L. (turmeric) leaf extraction conditions using response surface methodology to optimize extraction yield and antioxidant content. J Food Qual 2019: 1-8. doi: 10.1155/2019/7575206 
  18. Martins S, Mussatto SI, Martinez-Avila G, Montanez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol Adv 29: 365-373. doi: 10.1016/j.biotechadv.2011.01.008 
  19. Alara OR, Abdurahman NH, Ukaegbu CI (2021) Extraction of phenolic compounds: A review. Curr Res Food Sci 4: 200-214. doi: 10.1016/j.crfs.2021.03.011 
  20. Manas D (2014) The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. Int J Plant Physiol Biochem 6: 66-70. doi: 10.5897/ijppb2014.0210 
  21. Tanvir EM, Hossen MS, Hossain MF, Afroz R, Gan SH, Khalil MI, Karim N (2017) Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Qual 2017: 8471785. doi: 10.1155/2017/8471785 
  22. Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, Gupta S, Arshad MF, Porwal O, Jha NK, Chaitanya MVNL, Dinesh Kumar Chellappan DK, Gaurav Gupta G, Gupta PK, Kamal Dua K, Khursheed R, Ankit Awasthi A, Corrie L (2022) Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci Technol 122: 187-200. doi: 10.1016/j.tifs.2022.02.023 
  23. Kiokias S, Proestos C, Oreopoulou V (2020) Phenolic acids of plant origin-A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 9: 534. doi: 10.3390/foods9040534 
  24. Taner G, Ozkan Vardar D, Aydin S, Aytac Z, Basaran A, Basaran N (2017) Use of in vitro assays to assess the potential cytotoxic, genotoxic and antigenotoxic effects of vanillic and cinnamic acid. Drug Chem Toxicol 40: 183-190. doi: 10.1080/01480545.2016.1190740 
  25. Kumar PPBS, Ammani K, Mahammad A, Gosala J (2013) Vanillic acid induces oxidative stress and apoptosis in non-small lung cancer cell line. Int J Recent Sci Res 4: 1077-1083 
  26. Boo YC (2019) p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 8: 275. doi: 10.3390/antiox8080275 
  27. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. doi: 10.1016/0891-5849(95)02227-9 
  28. Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrom S, Kitryte V, Moca S, Aura AM (2020) Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 59: 1275-1293. doi: 10.1007/s00394-019-01987-6 
  29. Morita K, Arimochi H, Ohnishi Y (2003) In vitro cytotoxicity of 4- methylcatechol in murine tumor cells: induction of apoptotic cell death by extracellular pro-oxidant action. J Pharmacol Exp Ther 306: 317-323. doi: 10.1124/jpet.103.050351 
  30. Payton F, Bose R, Alworth WL, Kumar AP, Ghosh R (2011) 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem Pharmacol 81: 1211-1218. doi: 10.1016/j.bcp.2011.03.005 
  31. Diantini A, Subarnas A, Lestari K, Halimah ELI, Susilawati Y, Supriyatna S, Julaeha E, Achmad TH, Suradji EW, Yamazaki C, Kobayashi K, Koyama H, Abdulah R (2012) Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol Lett 3: 1069-1072. doi: 10.3892/ol.2012.596 
  32. Cao M, Fan B, Zhen T, Wang J (2021) A pre-clinical trial study on afzelin: anti-human lung cancer, anti-cholinesterase, and anti-glucosidase properties. Arch Med Sci: 1-9. doi: 10.5114/aoms/136283 
  33. Tian F, Ruan QJ, Zhang Y, Cao H, Ma ZG, Zhou GL, Wu MH (2020) Quantitative analysis of six phenolic acids in Artemisia capillaris (Yinchen) by HPLC-DAD and their transformation pathways in decoction preparation process. J Anal Methods Chem 2020: 8950324. doi: 10.1155/2020/8950324