DOI QR코드

DOI QR Code

Crataegus pinnatifida Bunge root extract induces apoptosis of murine lung carcinoma cells in vitro

  • Minjeong Kwon (Department of Food Science and Engineering, Kyungpook National University) ;
  • Jongbeom Chae (Department of Food Science and Engineering, Kyungpook National University) ;
  • Ju-Ock Nam (Department of Food Science and Engineering, Kyungpook National University)
  • Received : 2023.06.13
  • Accepted : 2023.07.10
  • Published : 2023.12.31

Abstract

This study sought to evaluate the anticancer effects of Crataegus pinnatifida Bunge root extract (CPE) on murine Lewis lung carcinoma cells (LLC1) in vitro. CPE treatment (2.5, 5, 10 ㎍/mL, 24 h) of LLC cells led to a dose-dependent decrease in cell viability, while CPE treatment did not have a cytotoxic effect on non-cancer cells (NIH/3T3). CPE affects LLC by flipping the plasma membrane and making the membrane more permeable; by flow cytometry, CPE-induced annexin V and propidium iodide positivity, indicating induction of apoptosis in LLC cells. In addition, CPE enhanced the expression of apoptotic proteins caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1). CPE upregulated the proapoptotic protein BCL-2-associated X while downregulating the anti-apoptotic protein B-cell lymphoma 2 (BCL-2), suggesting that CPE induces apoptosis via the mitochondrial pathway. Furthermore, CPE upregulated the phosphorylation of the mitogen activated protein kinase p38. In conclusion, the results suggest that CPE has an anticancer effect in LLC cells by inducing apoptosis via p38.

Keywords

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127: 3029-3030. doi: 10.1002/cncr.33587 
  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cacancer J Clin 71: 209-249. doi: 10.3322/caac.21660 
  3. Kang MJ, Won Y-J, Lee JJ, Jung K-W, Kim H-J, Kong H-J, Im J-S, Seo HG (2022) Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2019. Cancer Res Treat 54: 330-344. doi: 10.4143/crt.2022.128 
  4. Jeon DS, Kim JW, Kim SG, Kim HR, Song SY, Lee JC, Ji W, Choi CM, Kim HC, Korean Association for Lung Cancer SKCCR (2022) Sex differences in the characteristics and survival of patients with non-small-cell lung cancer: A retrospective analytical study based on real-world clinical data of the Korean population. Thorac Cancer 13: 2584-2591. doi: doi.org/10.1111/1759-7714.14594 
  5. Park S, Park IK, Kim ER, Hwang Y, Lee HJ, Kang CH, Kim YT (2017) Current trends of lung cancer surgery and demographic and social factors related to changes in the trends of lung cancer surgery: an analysis of the national database from 2010 to 2014. Cancer Res Treat 49: 330-337. doi: 10.4143/crt.2016.196 
  6. Vinod SK, Hau E (2020) Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 25: 61-71. doi: 10.1111/resp.13870 
  7. Huang C-Y, Ju D-T, Chang C-F, Reddy PM, Velmurugan BK (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine 7. doi: 10.1051/bmdcn/2017070423 
  8. Lee JG, Kim HC, Choi C-M (2021) Recent trends of lung cancer in Korea. Tuberc Respir Dis 84: 89. doi: 10.4046/trd.2020.0134 
  9. Mithoowani H, Febbraro M (2022) Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology. Curr Oncol 29: 1828-1839. doi: 10.3390/curroncol29030150 
  10. Yoshimura M, Itasaka S, Harada H, Hiraoka M (2013) Microenvironment and radiation therapy. Biomed Res Int 2013. doi: 10.1155/2013/685308 
  11. Gadgeel SM, Ramalingam SS, Kalemkerian GP (2012) Treatment of lung cancer. Radiol Clin N Am 50: 961-974. doi: 10.1016/j.rcl.2012.06.003 
  12. Sweeney CJ, Sandler AB (1998) Treatment of advanced (Stages III and IV) non-small-cell lung cancer. Curr Prob Cancer 22: 87-132. doi: 10.1016/S0147-0272(98)90010-1 
  13. Ricci MS, Zong W-X (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11: 342-357. doi: 10.1634/theoncologist.11-4-342 
  14. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, Blagosklonny M, El-Deiry W, Golstein P, Green D (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3-11. doi: 10.1038/cdd.2008.150 
  15. Lawen A (2003) Apoptosis-an introduction. Bioessays 25: 888-896. doi: 10.1002/bies.10329 
  16. Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immun 60: 1173-1180. doi: 10.1007/s00262-011-1008-4 
  17. Sartorius U, Schmitz I, Krammer PH (2001) Molecular mechanisms of death-receptor-mediated apoptosis. Chembiocam 2(1): 20-29. doi: 10.1002/1439-7633(20010105)2:1<20::AID-CBIC20>3.0.CO;2-X 
  18. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813: 558-563. doi: 10.1016/j.bbamcr.2011.01.026 
  19. Sridhar T, Symonds RP (2009) Principles of chemotherapy and radiotherapy. Obstet Gynaecol Reprod Med 19: 61-67. doi: 10.1016/j.ogrm.2008.11.011 
  20. Li C, Son HJ, Huang C, Lee SK, Lohakare J, Wang M-H (2010) Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, anti-α-glucosidase, and anti-inflammatory activities. Food Sci Biotechnol 19: 769-775. doi: 10.1007/s10068-010-0108-9 
  21. Li C, Wang M-H (2011) Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells. Nutr Res Pract 5: 101-106. doi: 10.4162/nrp.2011.5.2.101 
  22. Li F, Yuan Q, Rashid F (2009) Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohyd Polym 78: 80-88. doi: 10.1016/j.carbpol.2009.04.005 
  23. Zhang S-Y, Sun X-L, Yang X-L, Shi P-L, Xu L-C, Guo Q-M (2022) Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 74: 1507-1545. doi: 10.1093/jpp/rgac050 
  24. Luo M, Yang X, Hu JY, Jiao J, Mu FS, Song ZY, Gai QY, Qiao Q, Ruan X, Fu YJ (2016) Antioxidant properties of phenolic compounds in renewable parts of Crataegus pinnatifida inferred from seasonal variations. J Food Sci 81: C1102-C1109. doi: 10.1111/1750-3841.13291 
  25. Min H-J, Kim Y-K, Bae Y-S (2017) Evaluation of biological activity on hawthorn tree (Crataegus pinnatifida) extracts. J Korean Wood Sci Technol 45: 317-326. doi: 10.5658/WOOD.2017.45.3.317 
  26. Duan Y, Kim M-A, Seong J-H, Chung H-S, Kim H-S (2014) Antioxidative activities of various solvent extracts from haw (Crataegus pinnatifida Bunge). Korean J Food Preserv 21: 246-253. doi: 10.11002/kjfp.2014.21.2.246 
  27. Yang J, Gu J, Shen Y, Cao L, Zhou H, Zhu W (2023) Effect of Shan Zha (Hawthorn or Crataegus) on gastrointestinal cancer: A network pharmacology and molecular docking study. Cancer Pathogenesis and Therapy 1: E012-E012. doi: 10.1016/j.cpt.2023.02.001 
  28. Ponder KG, Boise LH (2019) The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov 5: 56. doi: 10.1038/s41420-019-0142-1 
  29. Gobeil S, Boucher C, Nadeau D, Poirier G (2001) Characterization of the necrotic cleavage of poly (ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 8: 588-594. doi: 10.1038/sj.cdd.4400851 
  30. Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8: 1-11. doi: 10.1186/1478-811X-8-31 
  31. Raisova M, Hossini AM, Eberle J, Riebeling C, Orfanos CE, Geilen CC, Wieder T, Sturm I, Daniel PT (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117: 333-340. doi: 10.1046/j.0022-202x.2001.01409.x 
  32. Gaumer S, Guenal I, Brun S, Theodore L, Mignotte B (2000) Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ7: 804-814. doi: 10.1038/sj.cdd.4400714 
  33. Zhu L, Han MB, Gao Y, Wang H, Dai L, Wen Y, Na LX (2015) Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep 12: 1151-1156. doi: 10.3892/mmr.2015.3450 
  34. Grab J, Rybniker J (2019) The expanding role of p38 mitogen-activated protein kinase in programmed host cell death. Microbiol Insights 12: 1178636119864594. doi: 10.1177/1178636119864594 
  35. Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Muzaffar Mir M, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA (2022) Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother. 150: 113054. doi: 10.1016/j.biopha.2022.113054 
  36. Yu C, Lv D-G, Hu X-M, Deng W (2015) Changes in flavonoids concentration of Hawthorn (Crataegus pinnatifida) in response to exogenous amino acids. J Hortic For 7(9): 193-199. doi: 10.5897/JHF2015.0405 
  37. Danihelova M, Veverka M, Sturdik E, Jantova S (2013) Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercetin derivatives. Interdiscip Toxicol. 6: 209-216. doi: 10.2478/intox-2013-0031 
  38. Ahmad S, Ullah F, Zeb A, Ayaz M, Ullah F, Sadiq A (2016) Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: chemical characterization of chloroform fraction and identification of bioactive compounds. BMC Complement Altern Med 16: 1-10. doi: 10.1186/s12906-016-1302-y 
  39. Khanavi M, Nabavi M, Sadati N, Shams Ardekani M, Sohrabipour J, Nabavi S Nabavi (2010) Cytotoxic activity of some marine brown algae against cancer cell lines. Biol Res. 43: 31-37. doi: 10.4067/S0716-97602010000100005