DOI QR코드

DOI QR Code

Neuroprotective effects of Salacca wallichiana extract against glutamate-induced oxidative stress in mouse Hippocampal HT22 cells

쥐 해마 HT22 세포에서 글루타메이트 유도 산화 스트레스에 대한 Salacca wallichiana 추출물의 신경 보호 효과

  • Ji Hun Byeon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Ye Yeong Hong (Faculty of Biotechnology, College of Applied Life Science, Jeju National University) ;
  • Jungwhoi Lee (Subtropical/tropical Organism Gene Bank, Jeju National University) ;
  • Thet Thet Mar Win (Department of Botany, Yangon University) ;
  • Su Su Hlaing (Dawei University) ;
  • Song-I Han (Subtropical/tropical Organism Gene Bank, Jeju National University) ;
  • Jae Hoon Kim (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
  • Received : 2023.04.27
  • Accepted : 2023.06.02
  • Published : 2023.12.31

Abstract

Glutamate is an excitatory neurotransmitter distributed in the central nervous system of mammals. However, high concentrations of glutamate are known to cause neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and stroke by causing nerve cell death. In this study, the antioxidant activity and neuroprotective effect of subtropical natural products were analyzed. Among 11 subtropical plant extracts mainly tested, Sallacca wallichiana extract (SE) showed the greatest free radical scavenging activity. Then, we confirmed through WST-1 assay that SE protected HT22 cells against glutamate-induced cell death in a concentration-dependent manner. The protective effects of SE against glutamate-induced apoptosis in HT22 cells were also confirmed by flow cytometry analysis using Annexin V/PI double staining. We also confirmed using H2DCF-DA single staining that SE inhibits glutamate-induced intracellular reactive oxygen species. And we were confirmed through that SE inhibited glutamate-induced phosphorylation of Mitogen-activated Protein kinases. Consequently, our results propose that SE may contribute to the development of therapeutics to prevent neurodegenerative diseases.

Glutamate는 포유류의 중추신경계에 분포하는 흥분성 신경전달물질로, 기억, 인지, 그리고 학습 등에 있어서 중요한 역할을 한다. 하지만 고농도의 Glutamate는 신경세포에 독성을 유발하여 신경세포사멸을 유도함으로써 알츠하이머병, 파킨슨병, 뇌졸중 등의 신경퇴행성질환을 일으키는 것으로 알려져 있다. 본 연구에서 아열대 천연물의 항산화 활성과 신경보호 효과를 분석하였다. 11종의 아열대 추출물 중에서 Salacca wallichiana 추출물 (SE)의 라디칼 소거활성이 뛰어난 것으로 나타났다. 그리고 SE의 신경보호 효과를 조사한 결과 glutamate로 유도되는 cell death로부터 신경세포를 보호하였다. 또한 glutamate로 유도되는 apoptosis로부터 HT22 세포를 보호하는 효과는 Annexin V와 PI로 염색한 후 flow cytometry를 통해 분석되었다. 추가적으로 H2DCFDA 염색을 이용하여 SE가 glutamate로 유도되는 세포 내 활성 산소 종 (ROS)을 억제한다는 것을 확인했다. SE의 신경보호 효과는 oxidative stress로 유발되는 Mitogen-activated protein kinase (MAPK) signaling pathway를 억제함으로써 신경세포를 보호하는 것으로 나타났다. 결과적으로 SE가 신경퇴행성질환을 예방하기 위한 치료제 개발에 기여할 수 있음을 나타낸다.

Keywords

Acknowledgement

본 연구는 2016년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(2016R1A6A1A03012862). HT22 세포를 배양해주신 이재란 연구원님께 감사의 말을 드립니다.

References

  1. Nations U (2019) Department of Economic and Social Affairs World population prospects. The Population Division of the UN Department of Economic and Social Affairs. World Population Prospects 2019, New York 
  2. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology 15: 565-581. doi: 10.1038/s41582-019-0244-7 
  3. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695. doi: 10.1126/science.7901908 
  4. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative medicine and cellular longevity 2012: 428010. doi: 10.1155/2012/428010 
  5. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative medicine and cellular longevity 2017: 2525967. doi: 10.1155/2017/2525967 
  6. McEntee WJ, Crook TH (1993) Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology 111: 391-401. doi: 10.1007/BF02253527 
  7. Greene JG, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Progress in neurobiology 48: 613-634. doi: 10.1016/0301-0082(96)00006-8 
  8. Choi DW (1992) Excitotoxic cell death. J neurobiol 23: 1261-1276. doi: 10.1002/neu.480230915 
  9. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2: 1547-1558. doi: 10.1016/0896-6273(89)90043-3 
  10. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Frontiers in cellular neuroscience 9: 91. doi: 10.3389/fncel.2015.00091 
  11. Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB (2004) Oxidative neuronal injury: the dark side of ERK1/2. Eur J Biochem 271: 2060-2066. doi: 10.1111/j.1432-1033.2004.04132.x 
  12. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37-40. doi: 10.1038/35065000 
  13. Pearson G, Robinson F, Beers Gibson T, Xu B-e, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine reviews 22: 153-183. doi: 10.1210/edrv.22.2.0428 
  14. Runchel C, Matsuzawa A, Ichijo H (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxidants & redox signaling 15: 205-218. doi: 10.1089/ars.2010.3733 
  15. Govaerts R, Dransfield J (2005) World checklist of palms. Royal Botanic Gardens, Kew. UK 
  16. Salacca wallichiana - Palmpedia - Palm Grower's Guide. https://www.palmpedia.net/wiki/Salacca_wallichiana. 
  17. Chung T-W, Lee JH, Choi H-J, Park M-J, Kim E-Y, Han JH, Jang SB, Lee S-O, Lee SW, Hang J (2017) Anemone rivularis inhibits pyruvate dehydrogenase kinase activity and tumor growth. J Ethnopharmacol 203: 47-54. doi: 10.1016/j.jep.2017.03.034 
  18. Park J-W, Kwon O-K, Ryu HW, Paik J-H, Paryanto I, Yuniato P, Choi S, Oh S-R, Ahn K-S (2018) Anti-inflammatory effects of Passiflora foetida L. in LPS-stimulated RAW264. 7 macrophages. International J Mol Med 41: 3709-3716. doi: 10.3892/ijmm.2018.3559 
  19. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radical Biology and Medicine 23: 134-147. doi: 10.1016/S0891-5849(96)00629-6 
  20. Watts ME, Pocock R, Claudianos C (2018) Brain energy and oxygen metabolism: emerging role in normal function and disease. Frontiers in molecular neuroscience 11: 216. doi: 10.3389/fnmol.2018.00216 
  21. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford university press, USA 
  22. Kalam S, Gul MZ, Singh R, Ankati S (2015) Free radicals: Implications in etiology of chronic diseases and their amelioration through nutraceuticals. Pharmacologia 6: 11-20. doi: 10.5567/pharmacologia.2015.11.20 
  23. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food chemistry 113: 12021205. doi: 10.1016/j.foodchem.2008.08.008 
  24. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26: 211-219 
  25. Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15: 7792-7814. doi:10.3390/molecules15117792 
  26. Vaidya AD, Devasagayam TP (2007) Current status of herbal drugs in India: an overview. J Clin Biochem Nutr 41: 1-11. doi: 10.3164/jcbn.2007001 
  27. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11: 1407-1435. doi: 10.1517/13543784.11.10.1407 
  28. Fukui M, Song J-H, Choi J, Choi HJ, Zhu BT (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 617: 1-11. doi: 10.1016/j.ejphar.2009.06.059 
  29. Ragasa CY, Ting JU, Ramones MV, Tan M, Lerom RR, Linis VC, Shen C-C (2016) Chemical constituents of Salacca wallichiana mart. Int J Curr Pham Rev Res 7(4): 186-189 
  30. Kwon J, Hwang H, Selvaraj B, Lee JH, Park W, Ryu SM, Lee D, Park JS, Kim HS, Lee JW (2021) Phenolic constituents isolated from Senna tora sprouts and their neuroprotective effects against glutamate-induced oxidative stress in HT22 and R28 cells. Bioorganic Chem 114: 105112. doi: 10.1016/j.bioorg.2021.105112 
  31. Li G, Min B-S, Zheng C, Lee J, Oh S-R, Ahn K-S, Lee H-K (2005) Neuroprotective and free radical scavenging activities of phenolic compounds from Hovenia dulcis. Archives of Pharmacal Research 28: 804-809. doi: 10.1007/BF02977346 
  32. GRAssMANN J (2005) Terpenoids as plant antioxidants. Vitamins & Hormones 72: 505-535. doi: S0083-6729(05)72015-X  S0083-6729(05)72015-X
  33. Gonzalez-Cofrade L, de Las Heras B, Ticona LA, Palomino OM (2019) Molecular targets involved in the neuroprotection mediated by terpenoids. Planta Medica 85: 1304-1315. doi: 10.1055/a-0953-6738 
  34. Poli G, Albano E, Dianzani MU (1993) Free radicals: from basic science to medicine. Basel: Brikhauser 
  35. Kandaswami C, Middleton Jr E (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Free Radicals in Diagnostic Medicine: A Systems Approach to Laboratory Technology, Clinical Correlations, and Antioxidant Therapy: 351-376. doi: 10.1007/978-1-4615-1833-4_25 
  36. Rhee SG, Chang T-S, Bae YS, Lee S-R, Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14: S211-S215. doi: 10.1097/01.ASN.0000077404.45564.7E 
  37. Wood GE, Young LT, Reagan LP, Chen B, McEwen BS (2004) Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Proceedings of the National Academy of Sciences 101: 3973-3978. doi: 10.1073/pnas.0400208101 
  38. Cao X, Fang Y (2015) Transducing oxidative stress to death signals in neurons. J Cell Biol 211: 741. doi: 10.1083/jcb.201510105 
  39. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7: 278-294. doi: 10.1038/nrn1886 
  40. Park H-J, Kim H-N, Kim CY, Seo M-D, Baek S-H (2021) Synergistic protection by isoquercitrin and quercetin against glutamate-induced oxidative cell death in HT22 cells via activating Nrf2 and HO-1 signaling pathway: Neuroprotective principles and mechanisms of Dendropanax morbifera leaves. Antioxidants 10: 554. doi: 10.3390/antiox10040554 
  41. Song JH, Kang KS, Choi Y-K (2017) Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorganic & Medicinal Chemistry Letters 27: 5109-5113. doi: 10.1016/j.bmcl.2017.10.075 
  42. Yang E-J, Kim G-S, Jun M, Song K-S (2014) Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct 5: 1395-1402. doi: 10.1039/C4FO00068D 
  43. Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S (2000) Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neuroscience letters 288: 163-166. doi: 10.1016/S0304-3940(00)01229-5 
  44. Bendotti C, Tortarolo M, Borsello T (2006) Targeting stress activated protein kinases, JNK and p38, as new therapeutic approach for neurodegenerative diseases. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents) 6: 109-117. doi: 10.2174/187152406777441880 
  45. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling 9: 49-89. doi: 10.1089/ars.2007.9.49 
  46. Wang Y, Qin Z-h (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15: 1382-1402. doi: 10.1007/s10495-010-0481-0 
  47. Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B (2020) Progress in target drug molecules for Alzheimer's disease. Current Topics in Medicinal Chemistry 20: 4-36. doi: 10.2174/1568026619666191203113745 
  48. Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M (2020) Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol 8: 238. doi: 10.3389/fbioe.2020.00238