DOI QR코드

DOI QR Code

3-Phenethyl-2-phenylquinazolin-4(3H)-one isolated from marine-derived Acremonium sp. CNQ-049 as a dual- functional inhibitor of monoamine oxidases-B and butyrylcholinesterase

  • Jong Min Oh (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University) ;
  • Prima F. Hillman (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Sang-Jip Nam (Department of Chemistry and Nanoscience, Ewha Womans University) ;
  • Hoon Kim (Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University)
  • Received : 2023.03.15
  • Accepted : 2023.04.14
  • Published : 2023.12.31

Abstract

Isolation of the culture broth of a marine-derived Acremonium sp. CNQ-049 guided by HPLC-UV yielded compound 1 (3-phenethyl-2-phenylquinazolin-4(3H)-one), and its inhibitory activities against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-secretase 1 (BACE1) were evaluated. Compound 1 was an effective selective MAO-B inhibitor with an IC50 value of 9.39 µM and a selectivity index (SI) value of 4.26 versus MAO-A. In addition, compound 1 showed a potent selective butyrylcholinesterase (BChE) inhibition with an IC50 value of 7.99 µM and an SI value of 5.01 versus acetylcholinesterase (AChE). However, compound 1 showed weak inhibitions against MAO-A, AChE, and BACE1. The Ki value of compound 1 for MAO-B was 5.22±1.73 µM with competitive inhibition, and the Ki value of compound 1 for BChE was 3.00±1.81 µM with mixed-type inhibition. Inhibitions of MAO-B and BChE by compound 1 were recovered by dialysis experiments. These results suggest that compound 1 is a dual-functional reversible inhibitor of MAO-B and BChE, that can be used as a treatment agent for neurological disorders.

Keywords

Acknowledgement

This work was supported by Sunchon National University Research Fund in 2022 (Grant Number 2022-0298).

References

  1. Khan S, Barve KH, Kumar MS (2020) Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol 18: 1106-1125. doi: 10.2174/1570159X18666200528142429
  2. Cao Z, Song Q, Yu G, Liu Z, Cong S, Tan Z, Deng Y (2021) Novel 3-benzylidene/benzylphthalide mannich base derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 35: 116074. doi: 10.1016/j.bmc.2021.116074
  3. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nistico R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Monfared AAT, Irizarry M, Albala B, Koyama A, Vergallo A (2021) The β-secretase BACE1 in Alzheimer's disease. Biol Psychiatry 89: 745-756. doi: 10.1016/j.biopsych.2020.02.001
  4. Ali S, Asad MHHB, Maity S, Zada W, Rizvanov AA, Iqbal J, Babak B, Hussain I (2019) Fluoro-benzimidazole derivatives to cure Alzheimer's disease: In-silico studies, synthesis, structure-activity relationship and in vivo evaluation for βsecretase enzyme inhibition. Bioorg Chem 88: 102936. doi: 10.1016/j.bioorg.2019.102936
  5. Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG (2021) Role of monoamine oxidase activity in Alzheimer's disease: An insight into the therapeutic potential of inhibitors. Molecules 26: 3724. doi: 10.3390/molecules26123724
  6. De Monte C, D'Ascenzio M, Guglielmi P, Mancini V, Carradori S (2016) Opening new scenarios for human mao inhibitors. Cent Nerv Syst Agents Med Chem 16: 98-104 https://doi.org/10.2174/1871524915666150831141705
  7. Schapira AHV (2011) Monoamine oxidase b inhibitors for the treatment of Parkinson's disease: A review of symptomatic and potential disease-modifying effects. CNS Drugs 25: 1061-1071. doi: 10.2165/11596310-000000000-00000
  8. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer's disease. Arch Pharm Res 36: 375-399. doi: 10.1007/s12272-013-0036-3
  9. Ramsay RR, Albreht A (2018) Kinetics, mechanism, and inhibition of monoamine oxidase. J Neural Transm (Vienna) 125: 1659-1683. doi: 10.1007/s00702-018-1861-9
  10. Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, Bogdanovic N, Winblad B, Sandebring-Matton A, Frykman S, Tjernberg LO (2017) Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res Ther 9: 57. doi: 10.1186/s13195-017-0279-1
  11. Ozdemir Z, Alagoz MA, Bahcecioglu OF, Gok S (2021) Monoamine oxidase-B (MAO-B) inhibitors in the treatment of Alzheimer's and Parkinson's disease. Curr Med Chem 28: 6045-6065. doi: 10.2174/0929867328666210203204710
  12. Finberg JP, Youdim MB (1983) Selective MAO A and B inhibitors: Their mechanism of action and pharmacology. Neuropharmacology 22: 441-446. doi: 10.1016/0028-3908(83)90194-6
  13. Mesulam M, Guillozet A, Shaw P, Quinn B (2002) Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis : 88-93. doi: 10.1006/nbdi.2001.0462
  14. Al Mamun A, Uddin MS (2020) KDS2010: A potent highly selective and reversible mao-b inhibitor for Alzheimer's disease. Comb Chem High Throughput Screen 23: 836-841. doi: 10.2174/1386207323666200117103144
  15. Zhang X, Rakesh KP, Bukhari SNA, Balakrishna M, Manukumar HM, Qin H-L (2018) Multi-targetable chalcone analogs to treat deadly Alzheimer's disease: Current view and upcoming advice. Bioorg Chem 80: 86-93. doi: 10.1016/j.bioorg.2018.06.009
  16. Sakayanathan P, Loganathan C, Kandasamy S, Ramanna RV, Poomani K, Thayumanavan P (2019) In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int J Biol Macromol 140: 1147-1157. doi: 10.1016/j.ijbiomac.2019.08.168
  17. Kumar A, Pintus F, Di Petrillo A, Medda R, Caria P, Matos MJ, Vina D, Pieroni E, Delogu F, Era B, Delogu GL, Fais A (2018) Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer's disease. Sci Rep 8: 4424. doi: 10.1038/s41598-018-22747-2
  18. Ha ZY, Mathew S, Yeong KY (2020) Butyrylcholinesterase: A multifaceted pharmacological target and tool. CPPS 21: 99-109. doi: 10.2174/1389203720666191107094949
  19. Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, Huang R, Xia M (2021) Identification of compounds for butyrylcholinesterase inhibition. SLAS Discovery 26: 1355-1364. doi: 10.1177/24725552211030897
  20. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer's disease: Relative importance of the cholinergic deficits. J Neurochem 64: 749-760. doi: 10.1046/j.1471-4159.1995.64020749.x
  21. Ibrahim MM, Gabr MT (2019) Multitarget therapeutic strategies for Alzheimer's disease. Neural Regen Res 14: 437-440. doi: 10.4103/1673-5374.245463
  22. Li Y, Qiang X, Luo L, Yang X, Xiao G, Zheng Y, Cao Z, Sang Z, Su F, Deng Y (2017) Multitarget drug design strategy against Alzheimer's disease: Homoisoflavonoid mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg Med Chem 25: 714-726. doi: 10.1016/j.bmc.2016.11.048
  23. Cai P, Fang SQ, Yang H-L, Yang XL, Liu QH, Kong LY, Wang XB (2018) Donepezil-butylated hydroxytoluene (BHT) hybrids as anti-Alzheimer's disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur J Med Chem 157: 161-176. doi: 10.1016/j.ejmech.2018.08.005
  24. He Q, Liu J, Lan JS, Ding J, Sun Y, Fang Y, Jiang N, Yang Z, Sun L, Jin Y, Xie SS (2018) Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer's disease: Design, synthesis and biological evaluation. Bioorg Chem 81: 512-528. doi: 10.1016/j.bioorg.2018.09.010
  25. Pisani L, Iacobazzi RM, Catto M, Rullo M, Farina R, Denora N, Cellamare S, Altomare CD (2019) Investigating alkyl nitrates as nitric oxide releasing precursors of multitarget acetylcholinesterase-monoamine oxidase B inhibitors. Eur J Med Chem 161: 292-309. doi: 10.1016/j.ejmech.2018.10.016
  26. Oh JM, Rangarajan TM, Chaudhary R, Singh RP, Singh M, Singh RP, Tondo AR, Gambacorta N, Nicolotti O, Mathew B, Kim H (2020) Novel class of chalcone oxime ethers as potent monoamine oxidase-B and acetylcholinesterase inhibitors. Molecules 25: 2356. doi: 10.3390/molecules25102356
  27. Jeong GS, Kang MG, Han SA, Noh JI, Park JE, Nam SJ, Park D, Yee ST, Kim H (2021) Selective inhibition of human monoamine oxidase B by 5-hydroxy-2-methyl-chroman-4-one isolated from an endogenous lichen fungus Daldinia fissa. J Fungi 7: 84. doi: 10.3390/jof7020084
  28. Jeong GS, Hillman PF, Kang MG, Hwang S, Park JE, Nam SJ, Park D, Kim H (2021) Potent and selective inhibitors of human monoamine oxidase A from an endogenous lichen fungus Diaporthe mahothocarpus. J Fungi 7: 876. doi: 10.3390/jof7100876
  29. Jeong GS, Lee EY, Kang MG, Nam SJ, Park D, Kim H (2022) (S)-5-methylmellein isolated from an endogenous lichen fungus Rosellinia corticium as a potent inhibitor of human monoamine oxidase A. Processes 10: 166. doi: 10.3390/pr10010166
  30. Oh JM, Lee C, Nam SJ, Kim H (2021) Chromenone derivatives as monoamine oxidase inhibitors from marine-derived MAR4 clade Streptomyces sp. CNQ-031. J Microbiol Biotechnol 31: 1022-1027. doi: 10.4014/jmb.2105.05003
  31. Baird-Lambert J, Davis PA, Taylor KM (1982) Methylaplysinopsin: A natural product of marine origin with effects on serotonergic neurotransmission. Clin Exp Pharmacol Physiol 9: 203-212. doi: 10.1111/j.1440-1681.1982.tb00798.x
  32. Lee HW, Choi H, Nam SJ, Fenical W, Kim H (2017) Potent inhibition of monoamine oxidase B by a piloquinone from marine-derived Streptomyces sp. CNQ-027. J Microbiol Biotechnol 27: 785-790. doi: 10.4014/jmb.1612.12025
  33. Lee HW, Jung WK, Kim HJ, Jeong YS, Nam SJ, Kang H, Kim H (2015) Inhibition of monoamine oxidase by anithiactins from Streptomyces sp. J Microbiol Biotechnol 25: 1425-1428. doi: 10.4014/jmb.1505.05020
  34. Hong A, Tu LC, Yang I, Lim KM, Nam SJ (2020) Marine natural products with monoamine oxidase (MAO) inhibitory activity. Pharm Biol 58: 716-720. doi: 10.1080/13880209.2020.1790618
  35. Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H (2016) Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg Med Chem Lett 26: 4714-4719. doi: 10.1016/j.bmcl.2016.08.044
  36. Lee JP, Kang MG, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho ML, Kim H (2019) Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg Chem 89: 103043. doi: 10.1016/j.bioorg.2019.103043
  37. Baek SC, Lee HW, Ryu HW, Kang MG, Park D, Kim SH, Cho ML, Oh SR, Kim H (2018) Selective inhibition of monoamine oxidase A by hispidol. Bioorg Med Chem Lett 28: 584-588. doi: 10.1016/j.bmcl.2018.01.049
  38. Oh JM, Jang HJ, Kim WJ, Kang MG, Baek SC, Lee JP, Park D, Oh SR, Kim H (2020) Calycosin and 8-O-methylretusin isolated from Maackia amurensis as potent and selective reversible inhibitors of human monoamine oxidase-B. Int J Biol Macromol 151: 441-448. doi: 10.1016/j.ijbiomac.2020.02.144
  39. Oh JM, Jang HJ, Kang MG, Mun SK, Park D, Hong SJ, Kim MH, Kim SY, Yee ST, Kim H (2022) Medicarpin and homopterocarpin isolated from Canavalia lineata as potent and competitive reversible inhibitors of human monoamine oxidase-B. Molecules 28: 258. doi: 10.3390/molecules28010258
  40. Jeong GS, Kang MG, Lee JY, Lee SR, Park D, Cho M, Kim H (2020) Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 25: E3896. doi: 10.3390/molecules25173896
  41. Oh JM, Kang Y, Hwang JH, Park JH, Shin WH, Mun SK, Lee JU, Yee ST, Kim H (2022) Synthesis of 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives and evaluation of their selective inhibitions against butyrylcholinesterase and monoamine oxidase-B. Int J Biol Macromol 217: 910-921. doi: 10.1016/j.ijbiomac.2022.07.178
  42. Baek SC, Park MH, Ryu HW, Lee JP, Kang MG, Park D, Park CM, Oh SR, Kim H (2019) Rhamnocitrin isolated from Prunus padus var. Seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg Chem 83: 317-325. doi: 10.1016/j.bioorg.2018.10.051
  43. Lee HW, Ryu HW, Kang MG, Park D, Lee H, Shin HM, Oh SR, Kim H (2017) Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi. Int J Biol Macromol 97: 598-605. doi: 10.1016/j.ijbiomac.2017.01.080
  44. Jang Y, Lee SB, Hong J, Chun S, Lee J, Hong S (2020) Synthesis of 2-aryl quinazolinones via iron-catalyzed cross-dehydrogenative coupling (CDC) between N-H and C-H Bonds. Org Biomol Chem 18: 5435-5441. doi: 10.1039/D0OB00866D
  45. Wang D, Gao F (2013) Quinazoline derivatives: synthesis and bioactivities. Chem Cent J 7: 95. doi: 10.1186/1752-153X-7-95
  46. Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR (2022) Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers doi: 10.1007/s11030-022-10564-9. [Online ahead of print].
  47. Rehuman NA, Oh JM, Nath LR, Khames A, Abdelgawad MA, Gambacorta N, Nicolotti O, Jat RK, Kim H, Mathew B (2021) Halogenated Coumarin-Chalcones as Multifunctional Monoamine Oxidase-B and Butyrylcholinesterase Inhibitors. ACS Omega 6: 28182-28193. doi: 10.1021/acsomega.1c04252
  48. Jin QH, Zhang LP, Zhang SS, Zhang DN, Zhang CY, Zheng ZJ, Guan LP (2023) (S)-N-benzyl-1-phenyl-3,4-dihydroisoqunoline-2(1H)-carboxamide derivatives, multi-target inhibitors of monoamine oxidase and cholinesterase: design, synthesis, and biological activity. Molecules 28: 1654. doi: 10.3390/molecules28041654
  49. Sang Z, Song Q, Cao Z, Deng Y, Zhang L (2022) Design, synthesis, and evaluation of chalcone-vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 37: 69-85. doi: 10.1080/14756366.2021.1993845
  50. Venkidath A, Oh JM, Dev S, Amin E, Rasheed SP, Vengamthodi A, Gambacorta N, Khames A, Abdelgawad MA, George G, Nicolotti O, Kim H, Mathew B (2021) Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors. Molecules 26: 6004. doi: 10.3390/molecules26196004
  51. Carradori S, Fantacuzzi M, Ammazzalorso AA, Angeli A, Filippis BD, Galati S, Petzer A, Petzer JP, Poli G, Tuccinardi T, Agamennone M, Supuran CT (2022) Resveratrol analogues as dual inhibitors of monoamine oxidase b and carbonic anhydrase VII: A new multi-target combination for neurodegenerative diseases? Molecules 27: 7816. doi: 10.3390/molecules27227816
  52. Baek SC, Kang MG, Park JE, Lee JP, Lee H, Ryu HW, Park CM, Park D, Cho ML, Oh SR, Kim H (2019) Osthenol, a prenylated coumarin, as a monoamine oxidase A inhibitor with high selectivity. Bioorg Med Chem Lett 29: 839-843. doi: 10.1016/j.bmcl.2019.01.016