DOI QR코드

DOI QR Code

Antimicrobial activity of 7,10-epoxy-octadeca-7,9-dienoic acid crude extract against methicillin-resistant Staphylococcus aureus

메티실린 저항성 황색포도상구균에 대한 7,10-epoxy-octadeca-7,9-dienoic acid 조추출물의 항균 활성 연구

  • Su-Hyeon Son (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Ye-Ji Park (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Su-Hyeon Lee (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Ju-Hyeon Choi (School of Food Science & Biotechnology, Kyungpook National University) ;
  • Hak-Ryul Kim (School of Food Science & Biotechnology, Kyungpook National University)
  • Received : 2022.12.30
  • Accepted : 2023.02.20
  • Published : 2023.12.31

Abstract

Effective and alternative strategies to control methicillin-resistant Staphylococcus aureus (MRSA) are consistently needed. Previous study presented that 7,10-epoxy-octadeca-7,9-dienoic acid (EODA) was produced from 7,10-dihydroxy-8(E)-octadecenoic acid through one-step heat treatment. Further studies confirmed that EODA was highly active against broad range of pathogenic bacteria including MRSA, promising development of a novel antibacterial agent to control MRSA. However, there are some practical huddles for industrialization of EODA, especially high cost for fine purification. To address this problem, this study was focused on determination of any changes in the antibacterial activities of EODA when used as a crude extract. As a result, any significant changes in the antibacterial activities of EODA was not detected and additional synergistic effect for commercial antibiotics on antibacterial activity was sustained as it was.

메티실린 저항성 황색포도상구균(methicillin-resistant Staphylococcus aureus, MRSA)을 제어하기 위한 효과적이고 대안적인 전략이 계속해서 요구되고 있다. 이전 연구에서는 7,10-dihydroxy-8(E)-octadecenoic acid로부터 1단계 열처리를 통해 7,10-epoxyoctadeca-7,9-dienoic acid (EODA)이 생성되었음을 제시하였다. 추가적인 연구에서는 EODA가 MRSA를 포함한 광범위한 병원성 박테리아에 대해 높은 활성을 보인다는 것을 확인시켜 MRSA를 제어할 수 있는 새로운 항균제의 개발 가능성을 보여 주었다. 그러나 EODA를 산업적으로 사용하기 위해서는 극복해야 할 중요한 문제점이 있는데 그 중에서도 순수한 활성성분을 얻기 위한 정제에 많은 비용과 시간이 소요된다는 것이다. 이러한 문제를 해결하기 위해 본 연구는 열처리에 위한 EODA 생산 반응 후 얻어진 반응물을 추가적인 정제 과정 없이 조추출물의 상태로 사용할 때 항균 활성에 어떠한 변화가 나타나는 지 확인하는 데 초점을 맞추었다. 얻어진 결과로부터 조추출물의 상태로 사용하여도 EODA 자체가 나타내는 항균 활성에 유의한 변화가 감지되지 않았으며 상업용 항생제와 병용처리 시 나타나는 추가적인 시너지 효과 또한 그대로 유지됨을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047177).

References

  1. Bagby MO, Calson KD (1989) Fats for the future. Ellis Horwood Limited and Press, Chichester
  2. Suh MJ, Baek KY, Kim BS, Hou CT, Kim HR (2011) Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3. Appl Microbiol Biotechnol 89: 1721-1727. doi: 10.1007/s00253-010-3040-2
  3. Bajpai VK, Shin SY, Kim MJ, Kim HR, Kang SC (2004) Anti-fungal activity of bioconverted oil extract of linoleic acid and fractionated dilutions against phytopathogens Rhizoctonia solani and Botrytis cinerea. J Appl Biol Chem 47: 199-204
  4. Hou CT, Forman RJ (2000) Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. Ind Microbiol Biotechnol 24: 275-276. doi: 10.1038/sj.jim.2900816
  5. Kato T, Tamaguchi Y, Abe N, Uyehara T, Nakai T, Yamanaka S, Harada N (1984) Unsaturated hydroxy fatty acids, the self defensive substances in rice plant against rice blast disease. Chem Lett 25: 409-412
  6. Shin SY, Kim HR, Kang SC (2004) Antibacterial activity of various hydroxy fatty acids bioconveted by Pseudomonas aeruginosa PR3. J Appl Biol Chem 47: 205-208
  7. Ellamar JB, Song KS, Kim HR (2011) One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid. J Agric Food Chem 59: 8175-8179. doi: 10.1021/jf2015683
  8. Ellamar JB, Kim IH, Hou CT, Kim HR (2020) Optimal production of 7,10-epoxy-octadeca-7,9-dienoic acid from 7,10-dihydroxy-8(E)-octadecenoic acid by heat treatment. Biocatal Agric Biotechnol 24: 101545. doi: 10.1016/j.bcab.2020.101545
  9. Dasagrandhi C, Ellamar JB, Kim YS, Kim HR (2016) Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus. Food Sci Biotechnol 25: 1671-1675. doi: 10.1007/s10068-016-0257-6
  10. Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G (2012) New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39: 96-104. doi: 10.1016/j.ijantimicag.2011.09.028
  11. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23: 616-687. doi: 10.1128/CMR.00081-09
  12. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368: 874-885. doi: 10.1016/S0140-6736(06)68853-3
  13. Brown D (2015) Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void?. Nat Rev Drug Discov 14: 821-832. doi: 10.1038/nrd4675
  14. Friedman M (2015) Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem 63: 3805-3822. doi: 10.1021/acs.jafc.5b00778
  15. Dasagrandhi C, Kim YS, Kim IH, Hou CT, Kim HR (2017) 7,10-Epoxyoctadeca-7,9-dienoic acid: A small molecule adjuvant that potentiates β-lactam antibiotics against multidrug-resistant Staphylococcus aureus. Indian J Microbiol 57: 461-469. doi: 10.1007/s12088-017-0680-2
  16. Chang AI, Kim IH, Kang SC, Hou CT, Kim HR (2007) Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3. Appl Microbiol Biotechnol 74: 301-306. doi: 10.1007/s00253-006-0662-5
  17. Murra PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, Morgan DR (1995) Manual of Clinical Microbiology (6th edn). Trends Microbiol 3: 449-449
  18. Sopirala MM, Mangino JE, Gebreyes WA, Biller B, Bannerman T, Balada-Llasat J, Pancholi P (2010) Synergy testing by E-test, microdilution checker board, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemo 54: 4678-4683. doi: 10.1128/AAC.00497-10