DOI QR코드

DOI QR Code

Extraction of seven major compounds from Agastache rugosa (Fisch. & C.A.Mey.) Kuntze: optimization study using response surface methodology

  • Yang Hee Jo (Natural Product Research Center, KRIBB) ;
  • Seong Mi Lee (Natural Product Research Center, KRIBB) ;
  • Doo-Young Kim (Natural Product Research Center, KRIBB) ;
  • Yesu Song (Department of Herbal Pharmacology, College of Korean Product, Kyung Hee University) ;
  • Hocheol Kim (Department of Herbal Pharmacology, College of Korean Product, Kyung Hee University) ;
  • Mi Kyeong Lee (College of Pharmacy, Chungbuk National University) ;
  • Sei-Ryang Oh (Natural Product Research Center, KRIBB) ;
  • Hyung Won Ryu (Natural Product Research Center, KRIBB)
  • Received : 2023.01.09
  • Accepted : 2023.02.11
  • Published : 2023.12.31

Abstract

The purpose of this study is to demonstrate the potential enhancement of the flavonoid contents from Agastache rugosa, which can be obtained as raw materials for functional products in the food medicine industry by identifying important factors for efficient preparation to save costs and time in terms of economic factors. For this reason, response surface methodology using Box-Behnken design was used to optimize the extraction conditions for the maximum yield of seven major compounds from A. rugosa. The optimum conditions were obtained with an ethanol concentration of 60.0%, a temperature of 50 ℃, and an extraction time of 33.6 min, meaning that the regression analysis fits the experimental data well. Under these conditions, the seven major compounds 1-7 had observed values of 2.169, 2.135, 0.697, 2.485, 0.105, 1.247, and 0.551%, respectively. These results show that the observed values are in good agreement with the predicted values in the regression model. This process for optimization study exhibited a basic protocol for obtaining stable ingredients from A. rugosa that are appropriate for the development of effective functional products.

Keywords

Acknowledgement

This work was supported by grants from the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program and the Bio-Synergy Research Project (NRF- 2017M3A9C4065951) of the Ministry of Science, ICT and Future Planning through the National Research Foundation. We thank the Korea Basic Science Institute, Ochang, Korea, for providing the NMR data.

References

  1. Seo H, Kim C, Kim MB, Hwang JK (2019) Anti-photoaging effect of Korean mint (Agastache rugosa Kuntze) extract on UVB-irradiated human dermal fibroblasts. Prev Nutr Food Sci 24: 442-448. doi: 10.3746/pnf.2019.24.4.442
  2. Kim SH, Hong JH, Yang WK, Geum JH, Kim HR, Choi SY, Kang YM, An HJ, Lee YC (2020) Herbal combinational medication of Glycyrrhiza glabra, Agastache rugosa containing glycyrrhizic acid, tilianin inhibits neutrophilic lung inflammation by affecting CXCL2, interleukin-17/STAT3 signal pathways in a murine model of COPD. Nutrients 12: 926-956. doi: 10.3390/nu12040926
  3. Lee HY, Choi UY, Kim NY, Lim HW, Kwon HS (2017) Cosmetic composition for anti-aging comprising Agastache rugosa Kenta extract. KR20170001025A
  4. Yun MS, Kim C, Hwang JK (2019) Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/ Smad Pathways. J Microbiol Biotechnol 29: 1349-1360. doi: 10.4014/jmb.1908.08020
  5. Lee HK, Oh SR, Kim JI, Kim JW, Lee CO (1995) Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugose. J Nat Prod 58: 1718-1721. doi: 10.1021/np50125a011
  6. Shin D, Lee Y, Huang YH, Lim HW, Jang K, Kim DD, Lem CJ (2018) Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UVB-irradiated HaCaT keratinocytes. BMC Complement Altern Med 18: 196-205. doi: 10.1186/s12906-018-2194-9
  7. Desta KT, Kim GS, Kim YH, Lee WS, Lee SJ, Jin JS, Abd El-Aty AM, Shin HC, Shim JH, Shin SC (2016) The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed Chromatogr 30: 225-231. doi: 10.1002/bmc.3539. Epub 2015 Jul 14
  8. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA (2016) Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J Biol Sci 23: 524-530. doi: 10.1016/j.sjbs.2016.02.020
  9. Li HQ, Liu QZ, Liu ZL, Du SS, Deng ZW (2013) Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 18, 4170-4180. doi: 10.3390/molecules18044170
  10. An JH, Yuk HJ, Kim DY, Nho CW, Lee D, Ryu HW, Oh SR (2018) Evaluation of phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at different growth stages by UPLC-QTof-MS. Ind Crop Prod 112: 608-616. doi: 10.1016/j.indcrop.2017.12.050
  11. Min BS, Hattori M, Lee HK, Kim YH (1999) Inhibitory constituents against HIV-1 protease from Agastache rugose. Arch Pharm Res 22: 75-77. doi: 10.1007/BF02976440
  12. Lee C, Kim H, Kho Y (2002) Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. J Nat Prod 65: 414-416. doi: 10.1021/np010425e
  13. Amoah SK, Sandjo LP, Kratz JM, Biavatti MW (2016) Rosmarinic acid-Pharmaceutical and clinical aspects. Planta Med 82: 388-406. doi: 10.1055/s-0035-1568274
  14. Ngo YL, Lau CH, Chua LS (2018) Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 121: 678-700. doi: 10.1016/j.fct.2018.09.064
  15. Zielinska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13: 391-416. doi: 10.1007/s11101-014-9349-1
  16. Akanda MR, Uddin MN, Kim IS, Ahn D, Tae HJ, Park BY (2019) The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur J Pharmacol 842: 291-297. doi: 10.1016/j.ejphar.2018.10.044
  17. Lee HW, Ryu HW, Baek SC, Kang MG, Park D, Han HY, An JH, Oh SR, Kim H (2017) Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugose. Int J Biol Macromol 104: 547-553. doi: 10.1016/j.ijbiomac.2017.06.076
  18. Semwal RB, Semwal DK, Combrinck S, Trill J, Gibbons S, Viljoen A (2019) Acacetin-A simple flavone exhibiting diverse pharmacological activities. Phytochem Lett 32: 56-65. doi: 10.1016/j.phytol.2019.04.021
  19. KFDA (2019) Guideline on establishment of chemical profiles for herbal medicinal products. http://nifds.go.kr/brd/m_15/view.do?seq=12718. Accessed 9 Jan 2023 date
  20. KFDA (2019) https://www.mfds.go.kr/brd/m_99/view.do?seq=43895. Accessed 9 Jan 2023
  21. Yoo G, Lee IK, Park S, Kim N, Park JH, Kim SH (2018) Optimization of extraction conditions for phenolic acids from the leaves of Melissa officinalis L. using response surface methodology. Pharmacogn Mag 14: 155-161. doi: 10.4103/pm.pm_70_17
  22. Kim SB, Kim CT, Liu Q, Jo YH, Choi HJ, Hwang BY, Kim SK, Lee MK (2016) Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits. Pharm Biol 54: 1373-1379. doi: 10.3109/13880209.2015.1078382
  23. Li HZ, Zhang ZJ, Xue J, Cui LX, Hou TY, Li XJ, Chen T (2016) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology. Food Sci Technol 36: 686-693. doi: 10.1590/1678-457X.13516
  24. Zhang H, Cui J, Tian G, DiMarco-Crook C, Gao W, Zhao C (2019) Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem 289: 340-350. doi: 10.1016/j.foodchem.2019.03.063
  25. D'Archivio AA, Maggi MA (2017) Investigation by response surface methodology of the combined effect of PH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chem 219: 414-418. doi: 10.1016/j.foodchem.2016.09.167
  26. Oh KE, Shin H, Jeon YH, Jo YH, Lee MK, Lee KS, Park B, Lee KY (2016) Optimization of pancreatic lipase inhibitory and antioxidant activities of Ilex paraguariensis by using response surface methodology. Arch Pharm Res 39: 946-952. doi: 10.1007/s12272-016-0768-y
  27. Jeong JY, Jo YH, Lee KY, Do SG, Hwang BY, Lee MK (2014) Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface method. Bioorg Med Chem Lett 24: 2329-2333. doi: 10.1016/j.bmcl.2014.03.067
  28. Jeong JY, Jo YH, Kim SB, Liu Q, Lee JW, Mo EJ, Lee KY, Hwang BY, Lee MK (2015) Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg Med Chem Lett 25: 2269-2274. doi: 10.1016/j.bmcl.2015.04.045
  29. Kim SB, Kim CT, Liu Q, Jo YH, Choi HJ, Hwang BY, Kim SK, Lee MK (2016) Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits. Pharm Biol 54: 1373-1379. doi: 10.3109/13880209.2015.1078382
  30. Jang HJ, Kim WJ, Lee SU, Kim MO, Park MH, Song SB, Kim DY, Lee SM, Yuk HJ, Lee DY, Hwang BY, Ryu HW, Oh SR (2022) Optimization of chiisanoside and chiisanogenin isolation from Eleutherococcus sessiliflorus (Rupr. & Maxim.) leaves for industrial application: A pilot study. Ind Crops Prod 185: 115099. doi: 10.1016/j.indcrop.2022.115099