Acknowledgement
This work was supported by grants from the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program and the Bio-Synergy Research Project (NRF- 2017M3A9C4065951) of the Ministry of Science, ICT and Future Planning through the National Research Foundation. We thank the Korea Basic Science Institute, Ochang, Korea, for providing the NMR data.
References
- Seo H, Kim C, Kim MB, Hwang JK (2019) Anti-photoaging effect of Korean mint (Agastache rugosa Kuntze) extract on UVB-irradiated human dermal fibroblasts. Prev Nutr Food Sci 24: 442-448. doi: 10.3746/pnf.2019.24.4.442
- Kim SH, Hong JH, Yang WK, Geum JH, Kim HR, Choi SY, Kang YM, An HJ, Lee YC (2020) Herbal combinational medication of Glycyrrhiza glabra, Agastache rugosa containing glycyrrhizic acid, tilianin inhibits neutrophilic lung inflammation by affecting CXCL2, interleukin-17/STAT3 signal pathways in a murine model of COPD. Nutrients 12: 926-956. doi: 10.3390/nu12040926
- Lee HY, Choi UY, Kim NY, Lim HW, Kwon HS (2017) Cosmetic composition for anti-aging comprising Agastache rugosa Kenta extract. KR20170001025A
- Yun MS, Kim C, Hwang JK (2019) Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/ Smad Pathways. J Microbiol Biotechnol 29: 1349-1360. doi: 10.4014/jmb.1908.08020
- Lee HK, Oh SR, Kim JI, Kim JW, Lee CO (1995) Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugose. J Nat Prod 58: 1718-1721. doi: 10.1021/np50125a011
- Shin D, Lee Y, Huang YH, Lim HW, Jang K, Kim DD, Lem CJ (2018) Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UVB-irradiated HaCaT keratinocytes. BMC Complement Altern Med 18: 196-205. doi: 10.1186/s12906-018-2194-9
- Desta KT, Kim GS, Kim YH, Lee WS, Lee SJ, Jin JS, Abd El-Aty AM, Shin HC, Shim JH, Shin SC (2016) The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed Chromatogr 30: 225-231. doi: 10.1002/bmc.3539. Epub 2015 Jul 14
- Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA (2016) Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J Biol Sci 23: 524-530. doi: 10.1016/j.sjbs.2016.02.020
- Li HQ, Liu QZ, Liu ZL, Du SS, Deng ZW (2013) Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 18, 4170-4180. doi: 10.3390/molecules18044170
- An JH, Yuk HJ, Kim DY, Nho CW, Lee D, Ryu HW, Oh SR (2018) Evaluation of phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at different growth stages by UPLC-QTof-MS. Ind Crop Prod 112: 608-616. doi: 10.1016/j.indcrop.2017.12.050
- Min BS, Hattori M, Lee HK, Kim YH (1999) Inhibitory constituents against HIV-1 protease from Agastache rugose. Arch Pharm Res 22: 75-77. doi: 10.1007/BF02976440
- Lee C, Kim H, Kho Y (2002) Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. J Nat Prod 65: 414-416. doi: 10.1021/np010425e
- Amoah SK, Sandjo LP, Kratz JM, Biavatti MW (2016) Rosmarinic acid-Pharmaceutical and clinical aspects. Planta Med 82: 388-406. doi: 10.1055/s-0035-1568274
- Ngo YL, Lau CH, Chua LS (2018) Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 121: 678-700. doi: 10.1016/j.fct.2018.09.064
- Zielinska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13: 391-416. doi: 10.1007/s11101-014-9349-1
- Akanda MR, Uddin MN, Kim IS, Ahn D, Tae HJ, Park BY (2019) The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur J Pharmacol 842: 291-297. doi: 10.1016/j.ejphar.2018.10.044
- Lee HW, Ryu HW, Baek SC, Kang MG, Park D, Han HY, An JH, Oh SR, Kim H (2017) Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugose. Int J Biol Macromol 104: 547-553. doi: 10.1016/j.ijbiomac.2017.06.076
- Semwal RB, Semwal DK, Combrinck S, Trill J, Gibbons S, Viljoen A (2019) Acacetin-A simple flavone exhibiting diverse pharmacological activities. Phytochem Lett 32: 56-65. doi: 10.1016/j.phytol.2019.04.021
- KFDA (2019) Guideline on establishment of chemical profiles for herbal medicinal products. http://nifds.go.kr/brd/m_15/view.do?seq=12718. Accessed 9 Jan 2023 date
- KFDA (2019) https://www.mfds.go.kr/brd/m_99/view.do?seq=43895. Accessed 9 Jan 2023
- Yoo G, Lee IK, Park S, Kim N, Park JH, Kim SH (2018) Optimization of extraction conditions for phenolic acids from the leaves of Melissa officinalis L. using response surface methodology. Pharmacogn Mag 14: 155-161. doi: 10.4103/pm.pm_70_17
- Kim SB, Kim CT, Liu Q, Jo YH, Choi HJ, Hwang BY, Kim SK, Lee MK (2016) Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits. Pharm Biol 54: 1373-1379. doi: 10.3109/13880209.2015.1078382
- Li HZ, Zhang ZJ, Xue J, Cui LX, Hou TY, Li XJ, Chen T (2016) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology. Food Sci Technol 36: 686-693. doi: 10.1590/1678-457X.13516
- Zhang H, Cui J, Tian G, DiMarco-Crook C, Gao W, Zhao C (2019) Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem 289: 340-350. doi: 10.1016/j.foodchem.2019.03.063
- D'Archivio AA, Maggi MA (2017) Investigation by response surface methodology of the combined effect of PH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chem 219: 414-418. doi: 10.1016/j.foodchem.2016.09.167
- Oh KE, Shin H, Jeon YH, Jo YH, Lee MK, Lee KS, Park B, Lee KY (2016) Optimization of pancreatic lipase inhibitory and antioxidant activities of Ilex paraguariensis by using response surface methodology. Arch Pharm Res 39: 946-952. doi: 10.1007/s12272-016-0768-y
- Jeong JY, Jo YH, Lee KY, Do SG, Hwang BY, Lee MK (2014) Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface method. Bioorg Med Chem Lett 24: 2329-2333. doi: 10.1016/j.bmcl.2014.03.067
- Jeong JY, Jo YH, Kim SB, Liu Q, Lee JW, Mo EJ, Lee KY, Hwang BY, Lee MK (2015) Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg Med Chem Lett 25: 2269-2274. doi: 10.1016/j.bmcl.2015.04.045
- Kim SB, Kim CT, Liu Q, Jo YH, Choi HJ, Hwang BY, Kim SK, Lee MK (2016) Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits. Pharm Biol 54: 1373-1379. doi: 10.3109/13880209.2015.1078382
- Jang HJ, Kim WJ, Lee SU, Kim MO, Park MH, Song SB, Kim DY, Lee SM, Yuk HJ, Lee DY, Hwang BY, Ryu HW, Oh SR (2022) Optimization of chiisanoside and chiisanogenin isolation from Eleutherococcus sessiliflorus (Rupr. & Maxim.) leaves for industrial application: A pilot study. Ind Crops Prod 185: 115099. doi: 10.1016/j.indcrop.2022.115099