DOI QR코드

DOI QR Code

Anti-inflammatory effect of naringenin-7-O-phosphate in LPS-induced RAW 264.7 cells

LPS로 유도된 RAW 264. 7 대식세포에서 Naringenin-7-O-phosphate의 항염증 활성

  • Hyehyun Hong (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Tae-Jin Park (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Byeong Min Choi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Yu-Jung Yi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Seung-Young Kim (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2023.01.03
  • Accepted : 2023.01.19
  • Published : 2023.12.31

Abstract

The most abundant flavanone of grapefruits, naringenin (NN), is well known for its hepatoprotective, anti-lipid peroxidation and anti-carcinogenic effects. We generated three derivatives from NN using this technique in previous studies. Among them, it was confirmed that naringenin-7-O-phosphate (N7P), whose biological and physicochemical properties were not reported, showed a water solubility 45 times higher than that of NN. Therefore, in this study, the anti-inflammatory activity was evaluated in RAW 264.7 cells to investigate the potential physiological activity of N7P. As a result, N7P showed nitric oxide (NO) inhibitory activity at concentrations that did not show toxicity. In addition, prostaglandin E2 (PGE2) showed significant inhibitory activity from the lowest concentration of 12.5 μM and showed increased inhibitory activity compared to NN. In addition, as a result of western blot, N7P showed increased cyclooxygenase-2 (COX-2) inhibitory activity than NN, and effectively inhibited NO and PGE2 by significantly inhibiting their expression pathways. N7P also inhibited inflammatory cytokines, including tumor necrosis factor-α, interleukin-6. Based on these results, we propose that N7P can be used as a potent antiinflammatory agent.

플라보노이드는 광범위한 생물학적 활성을 가진 중요한 식물 2차 대사 산물로, 본 연구에서 사용된 naringenin (NN)은 자몽에 가장 풍부한 플라바논의 하나로 간 보호, 항지질 과산화 및 항암 활성에 관한 연구가 보고되었다. 우리는 이전 연구에서 biorenovation 기법을 NN에 적용하여 naringenin-7-O-Glucoside(prunin), naringenin-7-O-phosphate (N7P), 6''-O-Succinyl prunin과 같은 3가지 유도체를 합성하였으며 그 중 생물학적 및 물리화학적 특성이 보고되지 않은 N7P가 NN보다 45배 증가한 수용해도를 나타냄을 확인하였다. 따라서 본 연구에서는 N7P의 추가적인 생리활성 조사하고자 RAW 264.7 세포에서 항염증 활성을 평가하였으며 N7P는 세포 독성이 나타나지 않는 농도에서 유효한 inducible NO synthase (iNOS), cyclooxygenase-2(COX-2) 억제 활성을 보였으며 이들의 발현 경로를 유의하게 억제함으로써 nitric oxide (NO) 및 prostaglandin E2 (PGE2)를 효과적으로 억제하였다. 뿐만 아니라 pro-inflammatory cytokines인 tumor necrosis factor-α (TNF-α)와 interleukin-6 (IL-6)의 발현 또한 유의하게 억제하는 것으로 확인되었다. 이러한 결과를 근거로 N7P가 다양한 염증 인자를 표적으로 하는 항염증 소재로 적용될 수 있음을 제안한다.

Keywords

Acknowledgement

본 논문은 중소벤처기업부와 한국산업기술진흥원의 지역특화산업육성 +R&D 사업의 지원을 받아 수행된 연구결과입니다 (S3090174).

References

  1. Choi HJ, Eun JS, Park YR, Kim DK, Li R, Moon WS, Park JM, Kim HS, Cho NP, Cho SD, Soh Y (2008) Ikarisoide A inhibits inducible nitric oxide synthase in lipopoly-saccharide-stimulated RAW264.7 cells via p38 kinase and nuclear factor-kappaB signaling p athways. Eur J Pharmacol 601(1-3): 171-178. doi: 10.1016/j.ejphar.2008.09.032
  2. Jeong HR, Sung MS, Kim YH, Ham HM, Choi YM, Lee JS (2012) Anti-Inflammatory activity of Salvia plebeia R. Br. leaf through hem e oxygenase-1 induction in LPS-Stimulated RAW264.7 macrophages. J Korean Soc Food Sci Nutr 41: 888-894. doi: 10.3746/jkfn.2012.41.7.888
  3. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30: 245-257. doi: 10.1055/s0030-1255354
  4. Lim KH. Staudt LM (2013) Toll-like receptor signaling. Cold Spring Harb. Perspect Biol 5(1): a011247. doi:10.1101/cshperspect.a011247
  5. Gilroy DW (2010) Eicosanoids and the endogenous control of acute inflammatory resolution. Int J Biochem Cell Biol 42(4): 524-528. doi:10.1016/j.biocel.2009.12.013
  6. Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S (2013) Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br J Nutr 110: 599-608. doi: 10.1017/S0007114512005594
  7. Comalada MJ, Lloberas AC (2012) MKP-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. European Journal of Immunology 42(8): 1938-1948. doi:10.1002/eji.201242441
  8. Pearson G, Robinson F, Gibson TB, Xu Bing-e, Karandikar M, Berman K, Melanie HC (2001) Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine reviews 22(2): 153-183. doi: 10.1210/edrv.22.2.0428
  9. Dendorfer U (1996) Molecular biology of cytokines. Artif Org 20: 437-444. doi: 10.1111/j.1525-1594.1996.tb04529.x
  10. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88(10): 4220-4224. doi: 10.1073/pnas.88.10.4220
  11. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064. doi: 10.1096/fasebj.6.12.1381691
  12. Hippeli S, Elstner EF (1999) Inhibition of biochemical model reactions for inflammatory processes by plant extracts: a review on recent developments. Free Radic Res 31: 81-87. doi: 10.1080/10715769900301361
  13. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith W G, Isakson PC Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91(8): 3228-3232. doi: 10.1073/pnas.91.8.3228
  14. Middleton E (1996) Biological properties of plant flavonoids: an overview. Int J Pharmacogn 34(5): 344-348. doi: 10.1076/phbi.34.5.344.13245
  15. Felgines C, Texier O, Morand C (2000) Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 279(6): G1148-G1154. doi: 10.1152/ajpgi.2000.279.6.G1148
  16. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J (2015) Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Delivery 22(4): 552-561. doi: 10.3109/10717544.2013.878003
  17. Zhang SX, Tani T, Yamaji S (2003) Glycosyl flavonoids from the roots and rhizomes of Asarum longerhizomatosum. J Asian Nat Prod Res 5(1):25-30. doi: 10.1080/1028602031000080423
  18. Tommasini S, Raneri D, Ficarra R, Calabro ML, Stancanelli R, Ficarra P (2004) Improvement in solubility and dissolution rate of flavonoids by complexation with beta-cyclodextrin. J Pharm Biomed Anal 35(2): 379-387. doi: 10.1016/S0731-7085(03)00647-2
  19. K. F. De Polo (1998) A Short Textbook of Cosmetology Augsburg. Verlag fur chemische Industie, Berlin
  20. Koirala M, Lee YK, Kim MS, Chung YC, Park JS, Kim SY (2019) Biotransformation of Naringenin by Bacillus amyloliquefaciens Into Three Naringenin Derivatives. Nat Prod Commun 14(5): 1934578X1985197. doi: 10.1177/1934578X19851971
  21. Van Meerloo J, Kaspers GJL, Cloos J (2011) Cell Sensitivity Assays: The MTT Assay. Cancer Cell Culture 237-245. doi: 10.1007/978-1-61779-080-5_20
  22. Morgan DML (1998) Tetrazolium (MTT) Assay for Cellular Viability and Activity. Polyamine Protocols 179-184. doi: 10.1385/0-89603-448-8:179
  23. Koh YJ, Cha DS, Ko JS, Park HJ, Choi HD (2010) Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. J Med Food 13(4): 870-878. doi: 10.1089/jmf.2009.1249
  24. Kim JY, Jung KS, Jeong HG (2004) Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett 569(1-2): 321-326. doi: 10.1016/j.febslet.2004.05.070
  25. Chun KS, Surh YJ (2004) Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem P harmacol 68(6): 1089-1100. doi: 10.1016/j.bcp.2004.05.031
  26. Chao CL, Weng CS, Chang NC, Lin JS, Kao ST, Ho FM (2010) Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res 30(12): 858-864. doi: 10.1016/j.nutres.2010.10.011
  27. Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT (1988) Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 167(3): 1211-1227. doi: 10.1084/jem.167.3.1211
  28. Delgado AV, McManus AT, and Chambers JP (2003) Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2 and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37(6): 355-361. doi: 10.1016/j.npep.2003.09.005
  29. Teng J, Li J, Zhao Y, Wang M (2021) Hesperetin, a dietary flavonoid, inhibits AGEs-induced oxidative stress and inflammation in RAW264.7 cells. J Funct Foods 81: 104480. doi: 10.1016/j.jff.2021.104480