DOI QR코드

DOI QR Code

Bacterial neuraminidase inhibitory linarin from Dendranthema zawadskii

  • Ju Yeon Kim (Department of Pharmaceutical Engineering, IALS, Gyeongsang National University) ;
  • Jae Yeon Park (Department of Pharmaceutical Engineering, IALS, Gyeongsang National University) ;
  • Yun Gon Son (Department of Pharmaceutical Engineering, IALS, Gyeongsang National University) ;
  • Kyu Lim Kim (Department of Pharmaceutical Engineering, IALS, Gyeongsang National University) ;
  • Jeong Yoon Kim (Department of Pharmaceutical Engineering, IALS, Gyeongsang National University)
  • Received : 2022.12.14
  • Accepted : 2023.01.06
  • Published : 2023.12.31

Abstract

Dendranthema zawadskii is a one of the popular plants as native in South Korea. In this study, linarin was isolated and purified using silica-gel, Diaion, and Sephadex LH-20 from the aerial parts of D. zawadskii. The chemical structure was completely identified through spectroscopic data including 1D, 2D nucleic magnetic resonance, and HRFABMS. Furthermore, linarin inhibited the bacterial neuraminidase (BNA) activity with 13.5 μM of IC50 dose-dependently. Through the enzyme kinetic experiments, linarin as BNA inhibitor exhibited a typical noncompetitive inhibition mode which Km was contestant and Vmax decreased as the concentration of the inhibitor increased. It was further identified that the inhibition constant was 16.0 μM. Linarin was the most abundance metabolite in the aerial part of D. zawadskii extract by UHPLC-TOF/MS analysis. Therefore, D. zawadskii and its main component are expected that it can be effectively used for the infection and inflammation caused by bacteria.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), 2021R1A5A8029490 and 2022R1F1A1063786.

References

  1. Belkaid Y, Hand TW (2014) Role of the Microbiota in Immunity and inflammation. Cell 157: 121. doi: 10.1016/J.CELL.2014.03.011
  2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204. doi: 10.18632/ONCOTARGET.23208
  3. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F (2018) The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9: 419. doi:10.3389/FPHYS.2018.00419/BIBTEX
  4. Snowden JN, Beaver M, Smeltzer MS, Kielian T (2012) BiofilmInfected Intracerebroventricular Shunts Elicit Inflammation within the Central Nervous System. Infect Immun 80: 3206. doi: 10.1128/IAI.00645-12
  5. Percival SL, McCarty SM, Lipsky B (2015) Biofilms and Wounds: An Overview of the Evidence. Adv Wound Care 4: 373. doi: 10.1089/WOUND.2014.0557
  6. Minasyan H (2019) Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma, Resusc Emerg Med 2019 271 27: 1-22. doi: 10.1186/S13049-019-0596-4
  7. Soong G, Muir A, Gomez MI, Waks J, Reddy B, Planet P, Singh PK, Kanetko Y, Wolfgang MC, Hsiao YS, Tong L, Prince A (2006) Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 116: 2297-2305. doi: 10.1172/JCI27920
  8. Bowles WHD, Gloster TM (2021) Sialidase and Sialyltransferase Inhibitors: Targeting Pathogenicity and Disease. Front Mol Biosci 8: 705. doi: 10.3389/FMOLB.2021.705133/BIBTEX
  9. Schauer R, Kamerling JP (2018) Exploration of the Sialic Acid World. Adv Carbohydr Chem Biochem 75: 1. doi: 10.1016/BS.ACCB.2018.09.001
  10. Jennings MP, Day CJ, Atack JM (2022) How bacteria utilize sialic acid during interactions with the host: snip, snatch, dispatch, match and attach. Microbiology 168: 1157. doi: 10.1099/mic.0.001157
  11. Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L (2022) The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. Front Plant Sci 13: 2793. doi: 10.3389/FPLS.2022.973197/BIBTEX
  12. Kang JH, Kim JS (2020) New diploid populations of Chrysanthemum indicum L. (Asteraceae) from Korea. Korean J Plant Taxon 50: 17-21. doi: 10.11110/KJPT.2020.50.1.17
  13. Kim AR, Kim HS, Kim DK, Lee JH, Yoo YH, Kim JY, Park SK, Nam ST, Kim HW, Park YH, Lee D, Lee MB, Kim YM, Choi WS (2016) The Extract of Chrysanthemum zawadskii var. latilobum Ameliorates Collagen-Induced Arthritis in Mice. Evidence-based Complement Altern Med 2016. doi: 10.1155/2016/3915013
  14. Lai JP, Lim YH, Su J, Shen HM, Ong CN (2007) Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. J Chromatogr B 848: 215-225. doi: 10.1016/j.jchromb.2006.10.028
  15. Clifford MN, Wu W, Kirkpatrick J, Kuhnert N (2007) Profiling the chlorogenic acids and other caffeic acid derivatives of herbalChrysanthemum by LC-MS. J Agric Food Chem 55: 929-936. doi: 10.1021/jf062314x
  16. Fan P, Hay AE, Marston A, Hostettmann K (2008) Acetylcholinesterase-Inhibitory Activity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddleja nitida. 46: 596-601. doi: 10.1080/13880200802179592
  17. Mottaghipisheh J, Taghrir H, Dehsheikh AB, Zomorodian K, Irajie C, Sourestani MM, Iraji A (2021) Linarin, a glycosylated flavonoid, with potential therapeutic attributes: A comprehensive review. Pharmaceuticals 14: 1104. doi: 10.3390/PH14111104/S1
  18. Han S, Sung KH, Yim D, Lee S, Lee CK, Ha NJ, Kim K (2002) The Effect of linarin on LPS-induced cytokine production and nitric oxide inhibition in murine macrophages cell line RAW264.7. Arch Pharm Res 25: 170-177. doi: 10.1007/bf02976559
  19. Erenler R, Telci̇ I, Elmastas M, Aksi̇t H, Gul F, Riza TuFEKCI A, Demi̇rtas I, Kayir O (2018) Quantification of flavonoids isolated from Mentha spicata in selected clones of Turkish mint landraces. 42: 1695-1705. doi: 10.3906/kim-1712-3
  20. Hurt AC (2007) Fluorometric Neuraminidase Inhibition Assay. Stand Oper Proced WHO, Geneva