DOI QR코드

DOI QR Code

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A., Coelho (Instituto Federal de Goias-Campus Goiania) ;
  • Sergio A., Coelho (Instituto Federal de Goias-Campus Goiania)
  • Received : 2022.02.15
  • Accepted : 2022.11.11
  • Published : 2023.01.25

Abstract

The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

Keywords

Acknowledgement

The authors wish to thank the Research Support of the State of Goias (FAPEG) for financing this research (Project number 2017.10.267000.513) and grant scholarship.

References

  1. ABNT (2014), NBR 6118, Design of Concrete StructuresProcedure, Brazilian Association of Standard Codes, Rio de Janeiro, Brazil. (in Portuguese)
  2. ABNT (2017), NBR 9062, Design and Execution of Precast Concrete Structures, Brazilian Association of Standard Codes, Rio de Janeiro, Brazil. (in Portuguese)
  3. Aguiarm E.A.B,, Belluciom E.K. and El Debsm M.K.. (2012), "Behaviour of grouted dowels used in precast concrete connections", Struct. Concrete, 13, 84-94. https://doi.org/10.1002/suco.201100048,
  4. Amadio, C., Bedon, C., Fasan, M. and Pecce, M.R. (2017), "Refined numerical modelling for the structural assessment of steel-concrete composite beam-to-column joints under seismic loads", Eng. Struct., 138, 394-409. http://dx.doi.org/10.1016/j.engstruct.2017.02.037,
  5. Bellucio, E.K. (2016), "Behavior of dowel embedded in steel fibers concrete for beam-column connections in precast concrete", D.Sc. Thesis, University of Sao Paulo, Sao Carlos. (in Portuguese)
  6. Breccolotti, M., Gentile, S., Tommasini, M., Materazzi, A.L., Bonfigli, M.F., Pasqualini, B., Colone, V. and Gianesini, M. (2016), "Beam-column joints in continuous RC frames: Comparison between cast-in-situ and precast solutions", Eng. Struct., 127(15), 129-144. https://doi.org/10.1016/j.engstruct.2016.08.018.
  7. CEN (2004), Eurocode 2, Design of Concrete Structures-Part 1: General Rules and Rules for Building, European Committee for Standardization, Brussels, Belgium.
  8. El Debs, M.K., Miotto, A.M. and El Debs, A.L.H.C. (2010), "Analysis of a semi-rigid connection for precast concrete", Struct. Build., 163, 41-51. https://doi.org/10.1680/stbu.2009.163.1.41.
  9. Elliott, K.S., Davies, G., Ferreira, M., Gorgun, H. and Mahdi, A.A. (2003a), "Can precast concrete structures be designed as semirigid frames? Part 1-The experimental evidence", Struct. Eng., 81, 14-27.
  10. Elliott, K.S., Davies, G., Ferreira, M., Gorgun, H. and Mahdi, A.A. (2003b), "Can precast concrete structures be designed as semirigid frames? Part 2-Analytical equations & column effective length factors", Struct. Eng., 81, 28-37.
  11. Elliott, K.S., Davies, G., Gorgun, H. and Adlparvar, M.R. (1998), "The stability of precast concrete skeletal structures", PCI J., 43, 42-57. https://doi.org/10.15554/pcij.03011998.42.60.
  12. Feng, D., Wu, G. and Lu, Y. (2018), "Finite element modelling approach for precast reinforced concrete beam-to-column connections under cyclic loading", Eng. Struct., 174(1), 49-66. https://doi.org/10.1016/j.engstruct.2018.07.055.
  13. Ferreira, M.A., Elliot, K.S. and Sarakot, H. (2010), "State-of-art research report: precast concrete framed structures with semirigid connections", Nottingham.
  14. FIB (2013), fib Model Code for Concrete Structures 2010, Wilhelm Ernst & Sohn, Berlin
  15. Hadade, M.A.S., Catoia, B., Ferreira, M.D.A. and Carvalho, R.C. (2018), "Experimental characterization of the moment-rotation relationship of the beam-column connection in precast concrete", Rev Mater., 23(3), 1. https://doi.org/10.1590/S1517-707620180003.0498.
  16. Hawileh, R.A., Rahman, A. and Tabatabai, H. (2010), "Nonlinear finite element analysis and modeling of a precast hybrid beamcolumn connection subjected to cyclic loads", Appl. Math. Model., 34(9), 2562-2583. https://doi.org/10.1016/j.apm.2009.11.020.
  17. Kataoka, M.N., Ferreira, M.A. and de Cresce El Debs, A.L.H. (2017), "Nonlinear FE analysis of slab-beam-column connection in precast concrete structures", Eng. Struct., 143, 306-315. https://doi.org/10.1016/j.engstruct.2017.04.028.
  18. Kataoka, M.N., Ferreira, M.A. and El Debs, A.L.H.C. (2012), "A study on the behavior of beam- column connections in precast concrete structures: Experimental analysis", Ibracon. Struct. Mater. J., 5(6), 848-873. https://doi.org/10.1590/S1983-41952012000600008.
  19. Kataoka, M.N., Ferreira, M.A. and El Debs, A.L.H.C. (2015), "Study on the behavior of beam-column connection in precast concrete structure", Comput. Concrete, 16(1), 163-178. https://doi.org/10.12989/cac.2015.16.1.163.
  20. Kremmyda, G.D., Fahjan, Y.M. and Tsoukantas, S.G. (2014), "Nonlinear FE analysis of precast RC pinned beam-to-column connections under monotonic and cyclic shear loading", Bull. Earthq. Eng., 12, 1615-1638. https://doi.org/10.1007/s10518-013-9560-2.
  21. Lacerda, M.M.S., Silva, T.J., Alva, G.M.S. and Lima, M.C.V. (2018), "Influence of the vertical grouting in the interface between corbel and beam in beam to column of precast concrete structures-An experimental analysis", Eng. Struct., 172, 201-213. https://doi.org/10.1016/j.engstruct.2018.05.113.
  22. Magliulo, G., Ercolino, M., Cimmino, M., Capozzi, V. and Manfredi, G. (2014), "FEM analysis of the strength of RC beam-to-column dowel connections under monotonic actions", Constr. Build. Mater., 69, 271-284. https://doi.org/10.1016/j.conbuildmat.2014.07.036.
  23. Mokhtar, R., Ibrahim, Z., Jumaat, M.Z., Hamid, Z.A. and Rahim, A.H.A. (2020), "Behaviour of semi-rigid precast beam-tocolumn connection determined using static and reversible load tests", Measure., 164, 108007. https://doi.org/10.1016/j.measurement.2020.108007.
  24. Nzabonimpa, J.D., Hong, W. and Kim, J. (2017), "Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames", Comput. Struct., 189, 31-48. https://doi.org/10.1016/j.compstruc.2017.04.016.
  25. PCI (2010), PCI Design Handbook, 7th Edition, Chicago: PCIPrecast/Prestressed Concrete Institute, Chicago, USA.
  26. Shaikh, A.F. and Branson, D.E. (1970), "Non-tensioned steel inprestressed concrete beams", PCI J., 15, 14-36. https://doi.org/10.15554/pcij.02011970.14.36
  27. TNO Building and Constrution Research (2017), DIANA User's Manual-Release 10.2.
  28. Yekrangnia, M., Taheri, A. and Zahrai, S.M. (2016), "Experimental and numerical evaluation of proposed precast concrete connections", Struct. Concrete, 17(6), 959-971. https://doi.org/10.1002/suco.201500168.
  29. Zhang, G. and Khandelwal, K. (2022), "Gurson-TvergaardNeedleman model guided fracture-resistant structural designs under finite deformations", Int. J. Numer. Meth. Eng., 123(14), 3344-3388. https://doi.org/10.1002/nme.6971.
  30. Zoubek, B., Fahjan, Y., Fischinger, M. and Isakovic, T. (2014), "Nonlinear finite element modelling of centric dowel connections in precast buildings", Comput. Concrete, 14(4), 463-477. https://doi.org/10.12989/cac.2014.14.4.463.