DOI QR코드

DOI QR Code

Design charts for estimating the consolidation times of reclaimed marine clays in Korea

  • Sang-Hyun, Jun (Infra Division, POSCO E&C) ;
  • Byung-Soo, Park (Department of Smart City & Civil Engineering, Gangwon State University) ;
  • Hyuk-Jae, Kwon (Department of Civil Engineering, Cheongju University) ;
  • Jong-Ho, Lee (Infra Division, POSCO E&C)
  • Received : 2022.07.22
  • Accepted : 2022.12.09
  • Published : 2023.01.10

Abstract

To predict the consolidation behavior of dredged and reclaimed marine clays exhibiting consolidation settlement with large strains, the finite strain consolidation theory must be used. However, challenges in appropriately applying the theory and determining input parameters make design and analysis studies difficult. To address these challenges, design charts for predicting the consolidation settlement of reclaimed marine clays are developed by a numerical approach based on the finite strain consolidation theory. To prepare the design charts, a sensitivity analysis of parameters is performed, and influencing parameters, such as initial void ratio and initial height, as well as the non-linear constitutive void ratio-effective stresspermeability relation, are confirmed. Six representative Korean marine clays obtained from different locations with different liquid limits are used. The design charts for estimating the consolidation times corresponding to various degrees of consolidation are proposed for each of the six representative clays. The consolidation settlements predicted from the design charts are compared to those in previous studies and at an actual construction site and are found to agree well with them. The proposed design charts can therefore be used to solve problems related to the consolidation of reclaimed marine clays having large strains.

Keywords

References

  1. Brandenberg, S.J. (2017), "iConsol.js: A javascript implicit finite difference code for nonlinear consolidation and secondary compression", Int. J. Geomech., 17(6), 1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000843.
  2. Carrier, W.D.III, Bromwell, L.G. and Somogyi, F. (1983), "Design capacity of slurried mineral waste ponds", J. Geotech. Eng., 109(5), 699-716. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(699).
  3. Fox, P.J. (1999), "Solution charts for finite strain consolidation of normally consolidated clays", J. Geotech. Geoenviron. Eng., 125(10), 847-867. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:10(847).
  4. Gibson, R.E., England, G.L. and Hussey, M.J.L. (1967), "The theory of one-dimensional consolidation of saturated clays I: Finite non-linear consolidation of thin homogeneous layers", Geotechnique, 17(3), 261-273. https://doi.org/10.1680/geot.1967.17.3.261. 
  5. Gibson, R.E., Schiffman, R.L. and Cargill, K.W. (1981), "The theory of one-dimensional consolidation of saturated clay II: finite non-linear consolidation of thick homogeneous layers", Can. Geotech. J., 18(2), 280-293. https://doi.org/10.1139/t81-030. Hu, A.F., Xia, C.Q., Cui, J., LI, C.X. and Xie, K.H. (2018),
  6. "Nonlinear consolidation analysis of natural structured clays under time-dependent loading", Int. J. Geomech., 18(2), 04017140. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001059.
  7. Jun, S.H. and Kwon, H.J. (2020), "Constitutive relationship proposition of marine soft soil in Korea using finite strain consolidation theory", J. Mar. Sci. Eng., 8(6), 429, https://doi.org/10.3390/jmse8060429.
  8. Jun, S.H., Lee, J.H, Park, B.S, and Kwon, H.J. (2021), "Design charts for consolidation settlement of marine clays using finite strain consolidation theory", Geomech. Eng., 24(3), 295-305. https://doi.org/10.12989/gae.2021.24.3.295.
  9. Kim, H.S. (2006), "A Study of Behavior on Dredged Fill using Geotechnical Centrifuge", Ph.D. Dissertation, University of Seoul, Republic of Korea.
  10. Lee, S.L., Karunaratne, G.P., Yong, K.Y., Chow, Y.K. and Chew, S.H. (1988), "Consolidation of dredged clay in reclamation", Soils Found., 28(2), 1-13. https://doi.org/10.3208/sandf1972.28.2_1.
  11. Liu, J.C. and Griffiths, D.V. (2015), "A general solution for 1D consolidation induced by depth-and time-dependent changes in stress", Geotechnique, 65(1), 66-72. https://doi.org/10.1680/geot.14.P.077.
  12. Liu, W., Shi, Z., Zhang, J. and Zhang, D. (2019), "Onedimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading", Geomech. Eng., 18(3), 299-313. https://doi.org/10.12989/gae.2019.18.3.299.
  13. McVay, M.C., Townsend, F.C. and Bloomquist, D.G. (1989), "One-dimensional Lagrangian consolidation", J. Geotech. Eng., 115(6), 893-897. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(893).
  14. Mikasa, M. (1965), The consolidation of soft clay: a new consolidation theory and its application, Kajima Institution Publishing Co. Ltd., Tokyo, Japan.
  15. Morris, P.H. (2002), "Analytical solutions of linear finite-strain one-dimensional consolidation", J. Geotech. Geoenviron. Eng., 128(4), 319-326. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:4(319).
  16. Pane, V. (1981), "One-Dimensional Finite Strain Consolidation", M.S. Dissertation, University of Colorado, Boulder, USA.
  17. Somogyi, F. (1979), "Analysis and Prediction of Phosphatic Clay Consolidation: Implementation Package", Technical Report, Florida, Phosphatic Clay Research Project, Bromwell & Carrier Engineering Inc., Lakeland, Florida, USA.
  18. Somogyi, F., Carrier, W.D.III., Lawyer, J.E. and Beckman, J.F. (1984), "Waste phosphatic clay disposal in mine cuts", Proceedings, Symposium on Sedimentation/Consolidation Models: Prediction and Validation, San Francisco, October, 545-564.
  19. Stark, T.D., Choi, H. and Schroeder, P.R. (2005a), "Settlement of dredged and contaminated material placement areas. I: Theory and use of primary consolidation, secondary compression, and desiccation of dredged fill", J. Waterw. Port C. - ASCE, 131(2), 43-51. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(43).
  20. Stark, T.D., Choi, H. and Schroeder, P.R. (2005b), "Settlement of dredged and contaminated mMaterial placement areas. II: Primary consolidation, secondary compression, and desiccation of dredged fill input parameters", J. Waterw. Port C. - ASCE, 131(2), 52-61. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:2(52).
  21. Xie, K.H., Xia, C.Q., An, R., Hu, A.F. and Zhang, W.P. (2016), "A study on the one-dimensional consolidation of doublelayered structured soils", Comput. Geotech., 73, 189-198, 189-198. https://doi.org/10.1016/j.compgeo.2015.12.00. 
  22. Yamagami, T., Jiang, J.C. and Ueno, K. (2000), "Back analysis for determination of sedimentation and consolidation properties", Proceedings of International Symposium on Coastal Geotechnical Engineering in Practice, Yokohama, Japan, September.