DOI QR코드

DOI QR Code

Influence of size and location of a pre-existing fracture on hydraulic fracture propagation path

  • Bo, Zhang (School of Civil Engineering, Shandong University) ;
  • Yao, Li (School of Civil Engineering, Shandong University) ;
  • Xue Y., Yang (Shandong Urban Construction Vocational College) ;
  • Shu C., Li (Research Center of Geotechnical and Structural Engineering, Shandong University) ;
  • Chao, Wei (Research Center of Geotechnical and Structural Engineering, Shandong University) ;
  • Juan, Songa (School of Civil Engineering, Shandong University)
  • Received : 2022.01.11
  • Accepted : 2023.01.17
  • Published : 2023.02.10

Abstract

Rock masses often contain natural fractures of varying sizes, and the size of the natural fractures may affect the propagation of hydraulic fractures. We conduct a series of triaxial hydraulic fracturing tests to investigate the effect of the pre-existing fracture size a on hydraulic fracture propagation. Experimental results show that the pre-existing fracture size impacts hydraulic fracture propagation. As the pre-existing fracture size increases, the hydraulic fracture propagates towards the pre-existing fracture tips, evidenced by the decreased distance between the final hydraulic fracture and the pre-existing fracture tips. Furthermore, the attracting effect of pre-existing fracture tips increases when the distance between the wellbore and the pre-existing fracture is short (L/D=2 or 4 in this study). With increased distance between the wellbore and the pre-existing fracture (L/D=6 in this study), the hydraulic fracture propagates to the middle of the pre-existing fracture rather than the tips, as the attracting effect of the pre-existing fracture diminishes.

Keywords

Acknowledgement

This paper is funded by the National Natural Science Foundation of China (NO. 51879151, 42272311), The Fundamental Research Funds of Shandong University No.2017JC001.

References

  1. Al-Rubaie, A. and Mahmud, H. (2020), "A numerical investigation on the performance of hydraulic fracturing in naturally fractured gas reservoirs based on stimulated rock volume", J. Petrol. Explor. Prod. Technol., 10, 3333-3345. https://doi.org/10.1007/s13202-020-00980-8.
  2. Behnia, M., Goshtasbi, K., Zhang, G. and Mirzeinaly Yazdi, S. (2015), "Numerical modeling of hydraulic fracture propagation and reorientation", Eur. J. Environ. Civ. Eng., 19(2), 152-167. https://doi.org/10.1080/19648189.2014.939306.
  3. Bohloli, B. and de Pater, C.J. (2006), "Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress", J. Petrol. Sci. Eng., 53, 1-12. https://doi.org/10.1016/j.petrol.2006.01.009.
  4. Dai, C., Liu, H., Wang, Y., Li, X. and Wang, W. (2018), "A simulation approach for shale gas development in china with embedded discrete fracture modeling", Mar. Petroleum Geol., 100, 519-529. https://doi.org/10.1016/j.marpetgeo.2018.09.028.
  5. Dehghan, A.N., Goshtasbi, K., Ahangari, K. and Jin, Y. (2015), "Experimental investigation of hydraulic fracture propagation in fractured blocks", B. Eng. Geol. Environ., 74, 887-895. https://doi.org/10.1007/s10064-015-0745-6.
  6. Fan, T.G. and Zhang, G.Q. (2014), "Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures", Energy, 74, 164-173. https://doi.org/10.1016/j.energy.2014.05.037.
  7. Guo, T.K., Zhang, S.C., Qu, Z.Q, Zhou, T., Xiao, Y.S. and Gao. J. (2014), "Experimental study of hydraulic fracturing for shale by stimulated reservoir volume", Fuel, 128, 373-380. https://doi.org/10.1016/j.fuel.2014.03.029.
  8. Hadei, M.R. and Veiskarami, A. (2021), "An experimental investigation of hydraulic fracturing of stratified rocks", Bull. Eng. Geol. Environ., 80, 91-506. https://doi.org/10.1007/s10064-020-01938-0.
  9. Ham, S.M. and Kwon, T.H. (2019), "Characteristics of steady-state propagation of hydraulic fractures in ductile elastic and two-dimensionally confined plate media", Int. J. Rock Mech. Min. Sci., 114, 164-174. https://doi.org/10.1016/j.ijrmms.2018.12.023.
  10. Hou, B., Zhang, R.X., Tan, P., Song, Y., Fu, W.N., Chang, Z., Kao, J.W., Muhadasi, Y. and Chen, M. (2018), "Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in central Sichuan", J. Nat. Gas. Sci. Eng., 57, 122-134. https://doi.org/10.1016/j.jngse.2018.06.035.
  11. Jang, Y. and Sung, W. (2015). "Modeling of multi-stage hydraulic fracture propagation", J. Korean Inst. Gas, 19(5), 13-19. https://doi.org/10.7842/kigas.2015.19.5.13.
  12. Jiang, T.T., Zhang, J.H., Huang, G., Song, S.X. and Wu, H. (2018), "Experimental study on the mechanical property of coal and its application", Geomech. Eng., 14(1), 9-17. https://doi.org/10.12989/gae.2018.14.1.009.
  13. Kwok, C.Y., Duan, K. and Pierce, M. (2020), "Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method", Acta Geotech., 15, 245-264. https://doi.org/10.1007/s11440-019-00858-y.
  14. Liu, Z.Y., Chen, M. and Zhang, G.Q. (2014), "Analysis of the influence of a natural fracture network on hydraulic fracture propagation in carbonate formations", Rock Mech. Rock Eng., 47, 575-587. https://doi.org/10.1007/s00603-013-0414-7.
  15. Luo, Z.F., Zhang, N.L., Zhao, L.Q., Yao, L.M. and Liu, F. (2018), "Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures", J. Petrol. Sci. Eng., 171, 37-47. https://doi.org/10.1016/j.petrol.2018.07.019.
  16. Nadimi, S., Miscovic, I. and McLennan, J. (2016), "A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium", J. Petrol. Sci. Eng., 145, 444-452. https://doi.org/10.1016/j.petrol.2016.05.032.
  17. Salam, A.R. and Djebbar, T. (2013), "Pressure behaviours and flow regimes of a horizontal well with multiple inclined hydraulic fractures", Int. J. Oil Gas Coal Technol., 6, 207-241. https://doi.org/10.1504/IJOGCT.2013.050772
  18. Taleghani, A.D., Gonzalez, M. and Shojaei, A. (2016), "Overview of numerical models for interactions between hydraulic fractures and natural fractures: Challenges and limitations", Comput. Geotech., 71, 361-368. https://doi.org/10.1016/j.compgeo.2015.09.009.
  19. Tan, P., Jin, Y., Han, K., Hou, B., Chen, M., Guo, X.F. and Gao, J. (2017), "Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation", Fuel, 206, 482-493. https://doi.org/10.1016/j.fuel.2017.05.033.
  20. Warpinski, N.R. and Teufel, L.W. (1984), "Influence of geologic discontinuities on hydraulic fracture propagation", J. Petrol. Technol., 39(2), 209-220. https://doi.org/10.2118/13224-PA.
  21. Wei, C., Zhang, B., Li, S.C., Fan, Z. and Li, C. (2021), "Interaction between hydraulic fracture and pre-existing fracture under pulse hydraulic fracturing", SPE Production & Operations, 36(3), 553-571. https://doi.org/10.2118/205387-PA.
  22. Yan, C., Ren, X., Cheng, Y., Zhao, K., Deng, F., Liang, Q., Zhang, J., Li, Y. and Li, Q. (2019), "An experimental study on the hydraulic fracturing of radial horizontal wells", Geomech. Eng., 17(6), 535-541. https://doi.org/10.12989/gae.2019.17.6.535.
  23. Zeng, X.G. and Wei, Y.J. (2017), "Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking", J. Mech. Phys. Solid., 101, 235-249. https://doi.org/10.1016/j.jmps.2016.12.012.
  24. Zhang, B., Liu, J.Y., Wang, S.G., Li, S.C., Yang, X., Li, Y., Zhu, P. and Yang, W. (2018), "Impact of the distance between pre-existing fracture and wellbore on hydraulic fracture propagation." J. Nat. Gas. Sci. Eng., 57, 155-165. https://doi.org/10.1016/j.jngse.2018.07.004.
  25. Zhao, Y., He, P.F., Zhang, Y.F. and Wang, C. (2019), "A new criterion for a toughness-dominated hydraulic fracture crossing a natural frictional interface", Rock Mech. Rock Eng., 52(8), 2617-2629. https://doi.org/10.1007/s00603-018-1683-y