Acknowledgement
This paper is funded by the National Natural Science Foundation of China (NO. 51879151, 42272311), The Fundamental Research Funds of Shandong University No.2017JC001.
References
- Al-Rubaie, A. and Mahmud, H. (2020), "A numerical investigation on the performance of hydraulic fracturing in naturally fractured gas reservoirs based on stimulated rock volume", J. Petrol. Explor. Prod. Technol., 10, 3333-3345. https://doi.org/10.1007/s13202-020-00980-8.
- Behnia, M., Goshtasbi, K., Zhang, G. and Mirzeinaly Yazdi, S. (2015), "Numerical modeling of hydraulic fracture propagation and reorientation", Eur. J. Environ. Civ. Eng., 19(2), 152-167. https://doi.org/10.1080/19648189.2014.939306.
- Bohloli, B. and de Pater, C.J. (2006), "Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress", J. Petrol. Sci. Eng., 53, 1-12. https://doi.org/10.1016/j.petrol.2006.01.009.
- Dai, C., Liu, H., Wang, Y., Li, X. and Wang, W. (2018), "A simulation approach for shale gas development in china with embedded discrete fracture modeling", Mar. Petroleum Geol., 100, 519-529. https://doi.org/10.1016/j.marpetgeo.2018.09.028.
- Dehghan, A.N., Goshtasbi, K., Ahangari, K. and Jin, Y. (2015), "Experimental investigation of hydraulic fracture propagation in fractured blocks", B. Eng. Geol. Environ., 74, 887-895. https://doi.org/10.1007/s10064-015-0745-6.
- Fan, T.G. and Zhang, G.Q. (2014), "Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures", Energy, 74, 164-173. https://doi.org/10.1016/j.energy.2014.05.037.
- Guo, T.K., Zhang, S.C., Qu, Z.Q, Zhou, T., Xiao, Y.S. and Gao. J. (2014), "Experimental study of hydraulic fracturing for shale by stimulated reservoir volume", Fuel, 128, 373-380. https://doi.org/10.1016/j.fuel.2014.03.029.
- Hadei, M.R. and Veiskarami, A. (2021), "An experimental investigation of hydraulic fracturing of stratified rocks", Bull. Eng. Geol. Environ., 80, 91-506. https://doi.org/10.1007/s10064-020-01938-0.
- Ham, S.M. and Kwon, T.H. (2019), "Characteristics of steady-state propagation of hydraulic fractures in ductile elastic and two-dimensionally confined plate media", Int. J. Rock Mech. Min. Sci., 114, 164-174. https://doi.org/10.1016/j.ijrmms.2018.12.023.
- Hou, B., Zhang, R.X., Tan, P., Song, Y., Fu, W.N., Chang, Z., Kao, J.W., Muhadasi, Y. and Chen, M. (2018), "Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in central Sichuan", J. Nat. Gas. Sci. Eng., 57, 122-134. https://doi.org/10.1016/j.jngse.2018.06.035.
- Jang, Y. and Sung, W. (2015). "Modeling of multi-stage hydraulic fracture propagation", J. Korean Inst. Gas, 19(5), 13-19. https://doi.org/10.7842/kigas.2015.19.5.13.
- Jiang, T.T., Zhang, J.H., Huang, G., Song, S.X. and Wu, H. (2018), "Experimental study on the mechanical property of coal and its application", Geomech. Eng., 14(1), 9-17. https://doi.org/10.12989/gae.2018.14.1.009.
- Kwok, C.Y., Duan, K. and Pierce, M. (2020), "Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method", Acta Geotech., 15, 245-264. https://doi.org/10.1007/s11440-019-00858-y.
- Liu, Z.Y., Chen, M. and Zhang, G.Q. (2014), "Analysis of the influence of a natural fracture network on hydraulic fracture propagation in carbonate formations", Rock Mech. Rock Eng., 47, 575-587. https://doi.org/10.1007/s00603-013-0414-7.
- Luo, Z.F., Zhang, N.L., Zhao, L.Q., Yao, L.M. and Liu, F. (2018), "Seepage-stress coupling mechanism for intersections between hydraulic fractures and natural fractures", J. Petrol. Sci. Eng., 171, 37-47. https://doi.org/10.1016/j.petrol.2018.07.019.
- Nadimi, S., Miscovic, I. and McLennan, J. (2016), "A 3D peridynamic simulation of hydraulic fracture process in a heterogeneous medium", J. Petrol. Sci. Eng., 145, 444-452. https://doi.org/10.1016/j.petrol.2016.05.032.
- Salam, A.R. and Djebbar, T. (2013), "Pressure behaviours and flow regimes of a horizontal well with multiple inclined hydraulic fractures", Int. J. Oil Gas Coal Technol., 6, 207-241. https://doi.org/10.1504/IJOGCT.2013.050772
- Taleghani, A.D., Gonzalez, M. and Shojaei, A. (2016), "Overview of numerical models for interactions between hydraulic fractures and natural fractures: Challenges and limitations", Comput. Geotech., 71, 361-368. https://doi.org/10.1016/j.compgeo.2015.09.009.
- Tan, P., Jin, Y., Han, K., Hou, B., Chen, M., Guo, X.F. and Gao, J. (2017), "Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation", Fuel, 206, 482-493. https://doi.org/10.1016/j.fuel.2017.05.033.
- Warpinski, N.R. and Teufel, L.W. (1984), "Influence of geologic discontinuities on hydraulic fracture propagation", J. Petrol. Technol., 39(2), 209-220. https://doi.org/10.2118/13224-PA.
- Wei, C., Zhang, B., Li, S.C., Fan, Z. and Li, C. (2021), "Interaction between hydraulic fracture and pre-existing fracture under pulse hydraulic fracturing", SPE Production & Operations, 36(3), 553-571. https://doi.org/10.2118/205387-PA.
- Yan, C., Ren, X., Cheng, Y., Zhao, K., Deng, F., Liang, Q., Zhang, J., Li, Y. and Li, Q. (2019), "An experimental study on the hydraulic fracturing of radial horizontal wells", Geomech. Eng., 17(6), 535-541. https://doi.org/10.12989/gae.2019.17.6.535.
- Zeng, X.G. and Wei, Y.J. (2017), "Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking", J. Mech. Phys. Solid., 101, 235-249. https://doi.org/10.1016/j.jmps.2016.12.012.
- Zhang, B., Liu, J.Y., Wang, S.G., Li, S.C., Yang, X., Li, Y., Zhu, P. and Yang, W. (2018), "Impact of the distance between pre-existing fracture and wellbore on hydraulic fracture propagation." J. Nat. Gas. Sci. Eng., 57, 155-165. https://doi.org/10.1016/j.jngse.2018.07.004.
- Zhao, Y., He, P.F., Zhang, Y.F. and Wang, C. (2019), "A new criterion for a toughness-dominated hydraulic fracture crossing a natural frictional interface", Rock Mech. Rock Eng., 52(8), 2617-2629. https://doi.org/10.1007/s00603-018-1683-y