DOI QR코드

DOI QR Code

Impact of MJS treatment and artificial freezing on ground temperature variation: A case study

  • Jiling, Zhao (College of Civil Engineering, Nanjing Forestry University) ;
  • Ping, Yang (College of Civil Engineering, Nanjing Forestry University) ;
  • Lin, Li (College of Civil Engineering, Nanjing Forestry University) ;
  • Junqing, Feng (East China Construction Co., Ltd of China) ;
  • Zipeng, Zhou (Nanjing Institute of Surveying, Mapping & Geotechnical Investigation, Co., Ltd. )
  • 투고 : 2022.10.14
  • 심사 : 2023.01.13
  • 발행 : 2023.02.10

초록

To ensure the safety of underground infrastructures, ground can sometimes be first treated by cement slurry and then stabilized using artificial ground freezing (AGF) technique before excavation. The hydration heat produced by cement slurry increases the soil temperature before freezing and results in an extension of the active freezing time (AFT), especially when the Metro Jet System (MJS) treatment is adopted due to a high cement-soil ratio. In this paper, by taking advantage of an on-going project, a case study was performed to evaluate the influence of MJS and AGF on the ground temperature variation through on-site measurement and numerical simulation. Both on-site measurement and simulation results reveal that MJS resulted in a significant increase in the soil temperature after treatment. The ground temperature gradually decreases and then stabilized after completion of MJS. The initiation of AGF resulted in a quick decrease in ground temperature. The ground temperature then slowly decreased and stabilized at later freezing. A slight difference in ground temperature exists between the on-site measurements and simulation results due to limitations of numerical simulation. For the AGF system, numerical simulation is still strongly recommended because it is proven to be cost-effective for predicting the ground temperature variation with reasonable accuracy.

키워드

과제정보

The research work herein was supported by the National Natural Science Foundation of China (No.52178337), the China Scholarship Council Project (Grant N0.202108320283), and the National First-class Disciplines.

참고문헌

  1. Casini, F., Gens, A., Olivella, S. and Viggiani, M.B.G. (2016), "Artificial ground freezing of a volcanic ash: laboratory tests and modeling", Environ. Geotech., 3(3), 141-154. https://doi.org/10.1680/envgeo.14.00004.
  2. Chen, C. and Yang, P. (2021), "Study on the prevention and control for shield tail leakage of large-diameter river-crossing tunnel at high hydraulic pressure", J. For. Eng., 6(1), 155-162. (in Chinese).
  3. Chen, R.P., Lin, X.T., Kang, X., Zhong, Z.Q., Liu, Y., Zhang, P. and Wu, H.N. (2018), "Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing", Tunn. Undergr. Sp. Tech., 82, 468-481. https://doi.org/10.1016/j.tust.2018.08.059.
  4. Cui, Y.L. (2003), Well Construction Engineering Manual, Coal Industry Press, Beijing, China.
  5. Fan, W.H. and Yang, P. (2019), "Ground temperature characteristics during artificial freezing around a subway cross passage", Trans. Geotech., 20, 100250. https://doi.org/10.1016/j.trgeo.2019.100250.
  6. Fu, Y., Hu, J. and Wu, Y.W. (2021), "Finite element study on temperature field of subway connection aisle construction via artificial ground freezing method", Cold Reg. Sci. Technol., 189, 103327. https://doi.org/10.1016/j.coldregions.2021.103327.
  7. Hu, Y., Lei, H.Y., Zheng, G., Shi, L., Zhang, T.Q., Shen, Z.C. and Jia. R. (2021), "Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring", J. Rock Mec. Geotech. Eng., 14(2), 436-447. https://doi.org/10.1016/j.jrmge.2021.07.003.
  8. Huang, X.W., Yao, Z.S., Cai, H.B., Li, X.W. and Chen, H.Q. (2021), "Performance evaluation of coaxial borehole heat exchangers considering ground non-uniformity based on analytical solutions", Int. J. Therm. Sci., 170, 107162. https://doi.org/10.1016/j.ijthermalsci.2021.107162.
  9. Huang, S.B., Guo, Y.L., Liu, Y.Z., Ke, L.H., Liu, G.F. and Cheng, C. (2018), "Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing", App. Therm. Eng., 135(1), 435-445. https://doi.org/10.1016/j.applthermaleng.2018.02.090.
  10. Jin, H., Go, G.H., Ryu, B.H. and Lee, J. (2021), "Experimental and numerical investigation of closure time artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://org/10.12989/gae.2021.27.5.433.
  11. Lackner, R., Amon, A. and Lagger, H. (2005), "Artificial ground freezing of fully saturated soil: thermal problem", J. Eng. Mec., 131(2), 211-220. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(211).
  12. Levin, L., Golovatyi, I., Zaitsev, A., Pugin, A. and Semin, M. (2021), "Thermal monitoring of frozen wall thawing after artificial ground freezing: Case study of Petrikov Potash Mine", Tunn. Undergr. Sp. Tech., 107, 103685. https://doi.org/10.1016/j.tust.2020.103685.
  13. Li, K.Q., Li, D.Q. and Liu, Y. (2020), "Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method", Int. J. Heat Mass. Transf., 151, 119383. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119383.
  14. Li, K.Q., Miao, Z., Li, D.Q. and Liu, Y. (2022), "Effect of mesoscale internal structure on effective thermal conductivity of anisotropic geomaterials", Acta Geotech., 17(8), 3553-3566. https://doi.org/10.1007/s11440-022-01458-z.
  15. Liu, J.G., Maa, B.S. and Cheng, Y. (2018), "Design of the Gongbei tunnel using a very large cross-section pipe-roof and soil freezing method", Tunn. Undergr. Sp. Tech., 72, 28-40. https://doi.org/10.1016/j.tust.2017.11.012.
  16. Liu, J.W., Zhang, Y.X., Yuan, M.Q., Zhao, Y.D. and Yang, J.S. (2022), "Determining the cause of tunnel damages during tunneling in silty clay", Eng. Fail. Anal., 137, 106156. https://doi.org/10.1016/j.engfailanal.2022.106156.
  17. Marwan, A., Zhou, M.M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004.
  18. Pimentel, E., Papakonstantinou, S. and Anagnostou, G. (2012), "Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling", Tunn. Undergr. Sp. Tech., 28, 57-69. https://doi.org/10.1016/j.tust.2011.09.005.
  19. Qi, W.Q., Yang, Z.Y., Jiang, Y.S., Yang, X., Shao, X.K. and An, H.B. (2022), "Investigation on ground displacements induced by excavation of overlapping twin shield tunnels", Geomech. Eng., 28(5), 531-546. https://doi.org/10.12989/gae.2022.28.5.531.
  20. Russo, G., Corbo, A., Cavuoto, F. and Autuori, S. (2015), "Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis", Tunn. Undergr. Sp. Tech., 50, 226-238. https://doi.org/10.1016/j.tust. 2015.07.008.
  21. Shi, Y.F., Fu, J.Y., Yang, J.S., Xu, C.J. and Geng, D.G. (2017), "Performance evaluation of long pipe roof for tunneling below existing highway based on field tests and numerical analysis: case study", Int. J. Géoméch., 17(9), 04017054. https://doi.org/10.1061/(ASCE)GM. 1943-5622.0000933.
  22. Tonon, F. (2011), "ADECO full-face tunnel excavation of two 260 m2 tubes in clays with sub-horizontal jet-grouting under minimal urban cover", Tunn. Undergr. Sp. Tech., 26(2), 253-266. https://doi.org/10.1016/j.tust.2010.09.006.
  23. Tounsi, H., Rouabhi, A. and Jahangir, E. (2020), "Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid", Comput. Geotech., 119, 103382. https://doi.org/10.1016/j.compgeo.2019.103382.
  24. Vasilyeva, M., Stepanov, S., Spiridonov, D. and Vasil'ev, V. (2019), "Multiscale finite element method for heat transfer problem during artificial ground freezing", J. Comput. Appl. Math., 371, 112665. https://doi.org/10.1016/j.cam.2019.112605.
  25. Vitel, M., Rouabhi, A. and Tijani, M. (2015), "Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities", Comput. Geotech., 63, 99-111. https://doi.org/10.1016/j.compgeo.2014.08. 004.
  26. Wang, C., Han, J.T., Kim, S.K. and Jang, Y.E. (2021), "A novel preloading method for foundation underpinning for the remodeling of an existing building", Geomech. Eng., 24(1), 29-42. https://doi.org/10.12989/gae.2021.24.1.029.
  27. Yan, L., Wang, G., Chen, M., Yue, K.F. and Li, Q.N. (2018), "Experimental and application study on underpinning engineering of bridge pile foundation", Adv. Civ. Eng., 2018, 1-13. https://doi.org/10.1155/2018/5758325.
  28. Yang, P., Zhao, J.L. and Li, L. (2021), "An artificial freezing technique to facilitate shield tail brush replacement under high pore-water pressure using liquid nitrogen", KSCE J. Civ. Eng., 25(4), 1504-1514. https://doi.org/10.1007/s12205-021-0936-6.
  29. Zhang, P., Liu, Y., Kang, X., Zhong, K. and Chen, R.P. (2018), "Application of horizontal MJS piles in tunneling beneath existing twin tunnels", Proceedings of the 2nd International Symposium on Asia Urban GeoEngineering. Springer Singapore. Singapore.
  30. Zhao, J.L., Yang, P. and Li, L. (2020), "Investigating influence of metro jet system hydration heat on artificial ground freezing using numerical analysis", KSCE J. Civ. Eng., 25(2), 724-734. https://doi.org/10.1007/s12205-020-5407-y.
  31. Zhou, J., Zhao, W.Q. and Tang, Y.Q. (2021), "Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment", Tunn. Undergr. Sp. Tech., 107, 103647. https://doi.org/10.1016/j.tust.2020.103647.