DOI QR코드

DOI QR Code

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu (State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology) ;
  • Ning, Jiang (State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology) ;
  • Changxiang, Wang (College of Safety Science and Engineering, Anhui University of Science and Technology) ;
  • Meng, Zhang (College of Safety Science and Engineering, Anhui University of Science and Technology) ;
  • Dezhi, Kong (Wenzhou Medical University) ;
  • Haiyang, Pan (State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology)
  • 투고 : 2022.06.22
  • 심사 : 2023.01.12
  • 발행 : 2023.02.10

초록

Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

키워드

과제정보

This paper is supported by Anhui Provincial Key Research and Development Project (2022m07020006), Anhui Provincial Natural Science Foundation (2208085ME124), Shandong Provincial Natural Science Foundation (ZR2020QE102, ZR2019BEE013); SDUST Research Fund (2019TDJH101); Shandong postgraduate education quality improvement plan project (No. SDYJG19062); Research project of undergraduate teaching reform in Shandong Province (No. P2020013); National Natural Science Foundation of China (52004146,51974178, 52074169, 52174159); China Postdoctoral Science Foundation (2022M713386) ; the Research Fund of Key Laboratory of Deep Coal Resource Mining (CUMT), Ministry of Education (KLDCRM202102) and the 2020 Joint Fund for the Project of the State Key Laboratory of Coal Resources and Safe Mining-Outstanding Young Scientists Program of Beijing Higher Education Institutions (SKLCRSM20LH04).

참고문헌

  1. Ao, X., Wang, X., Zhu, X., Zhou, Z. and Zhang, X. (2016), "Grouting simulation and stability analysis of coal mine goaf considering hydromechanical coupling", J Comput Civ Eng., 31, 04016069. https://doi.org/0.1061/(ASCE)CP.19435487.0000640. 1061/(ASCE)CP.19435487.0000640
  2. Jaouhar, E.M., Li, L. and Aubertin, M. (2018), "An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution", Geomech. Geoeng., 15(3), 889-898. https://doi.org/10.12989/gae.2018.15.3.889.
  3. Jiang, N., Wang, C.X., Pan, H.Y., Yin, D.W. and Ma, J.B. (2020), "Modeling study on the influence of the strip filling mining sequence on mining-induced failure", Energy Sci Eng., 8, 2239-2255. https://doi.org/10.1002/ese3.660.
  4. Jiang, N., Yin, D., Ma, J., Han, L. and Yin, Q. (2021), "Effects of water immersion on the long-term bearing characteristics of crushed gangue in goaf", Geofluids., 2021(1), 1-11. https://doi.org/10.1155/2021/6675984.
  5. Jiang, N., Lv, K., Gao, Z., Di, H., Ma, J. and Pan, T. (2022), "Study on characteristics of overburden strata structure above abandoned gob of shallow seams-A case study", Energies, 15(24), 9359. https://doi.org/10.3390/en15249359.
  6. Karabork, T., Bilgehan, R.P. and Deneme, I.O. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103. https://doi.org/10.12989/gae.2014.7.1.087.
  7. Li, F.X., Yin, D.W., Wang, F., Jiang, N. and Li, X.L. (2022), "Effects of combination mode on mechanical properties of bi-material samples consisting of rock and coal", J Mater. Res. Technol., 19, 2156-2170. https://doi.org/10.1016/j.jmrt.2022.05.174.
  8. Li, M., Zhang, J. and Gao, R. (2016), "Compression characteristics of solid wastes as backfill materials", Adv Mater Sci Eng., 2016. https://doi.org/10.1155/2016/2496194.
  9. Liu, H., Deng, K., Lei, S., Bian, Z. and Chen, D. (2017), "Dynamic developing law and governance standard of ground fissures caused by underground mining", J Min Saf Eng., 5, 884-890. https://doi.org/10.13545/j.cnki.jmse.2017.05.009.
  10. Lu, Y., Jiang, N., Lu, W., Zhang, M., Kong, D., Xu, M. and Wang, C. (2022), "Experimental study on deformation characteristics of gangue backfill zone under the condition of natural water in deep mines", Sustainability, 14, 15517. https://doi.org/10.3390/su142315517
  11. Ma, J., Jiang, N., Wang, X., Jia, X. and Yao, D. (2021), "Numerical study of the strength and characteristics of sandstone samples with combined double hole and double fissure defects", SustainabilityBasel., 13(13). https://doi.org/10.3390/su13137090.
  12. Pan, H., Jiang, N., Gao, Z., Liang, X. and Yin, D. (2022), "Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures", Geomech. Eng., 30(1), 93-105. https://doi.org/10.12989/gae.2022.30.1.093.
  13. Rezaei, M., Hossaini, M.F. and Majdi, A. (2015), "A time-independent energy model to determine the height of destressed zone above the mined panel in longwall coal mining", Tunn. Undergr. Sp. Tech., 47, 81-92. https://doi.org/10.1016/j.tust.2015.01.001.
  14. Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A. and Matsui, K. (2015), "Surface subsidence due to underground mining operation under weak geological condition in Indonesia", J. Rock Mech. Geotech. Eng., 7, 337-344. https://doi.org/10.1016/j.jrmge.2015.01.007.
  15. Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
  16. State Administration of Coal Industry (2017), "Regulations for the preservation and mining of coal pillars in buildings, water bodies, railways and main roadways", Coal Industry Publishing House: Beijing, China.
  17. Sun, Y., Zhang, X., Mao, W. and Xu, L. (2015), "Mechanism and stability evaluation of goaf ground subsidence in the third mining area in Gong Changling District, China", Arabian J. Geosci., 8, 639-646. https://doi.org/10.1007/s12517-014-1270-9.
  18. Tan, Y., Xu, H., Yan, W.T., Guo, W.B., Bai, E.H., Qi, T.Y., Yin, D.W., Hao, B.Y., Cheng, H. and Shao, M.H. (2022), "Study on the overburden failure law of high-intensity mining in gully areas with exposed bedrock", Front Earth Sc-Switz., 10, 833384. https://doi.org/10.3389/feart.2022.833384.
  19. Tan, Y., Xu, H., Yan, W.T., Guo, W.B., Sun, Q., Yin, D.W., Zhang, Y.J., Zhang, X.Q., Jing, X.F., Wei. S.J. and Liu, X. (2022), "Development law of water conducting fracture zone in the fully mechanized caving face of gob-side entry driving: A case study", Minerals-Basel, 12, 557. https://doi.org/10.3390/ min12050557.
  20. Toprak, B., Bas, S. and Kalkan, I. (2021), "Effects of fly ash column treatment of HP clayey soils on seismic behavior of R/C structures", Geomech. Eng., 25(6), 473-480. https://doi.org/10.12989/gae.2021.25.6.473.
  21. Trueman, R. (1990), "A finite element analysis for the establishment of st ress development in a coal mine caved waste", Int. J. Min. Sci. Technol., 10(3), 247-252. https://doi.org/10.1016/0167-9031(90)90452-X.
  22. Wang, C.X., Lu, Y., Li, Y.Y., Zhang, B.C. and Liang, Y.B. (2019), "Deformation process and prediction of filling gangue: A case study in China", Geomech. Eng., 18(4), 417-426. https://doi.org/10.12989/gae.2019.18.4.417.
  23. Wang, C.X., Lu, Y., Qin, C.R., Li, Y.Y., Sun, Q.C. and Wang, D.J. (2019), "Ground disturbance of different building locations in old goaf area: A case study in China", Geo. Geo. Eng., 37(5), 4311-4325. https://doi.org/10.1007/s10706-019-00909-x.
  24. Wang, F., Zhang, C., Zhang, X. and Song, Q. (2015), "Overlying strata movement rules and safety mining technology for the shallow depth seam proximity beneath a room mining goaf", Int. J. Min. Sci. Technol., 25, 139-143. https://doi.org/CNKI:SUN:ZHKD.0.2015-01-021. https://doi.org/10.1016/j.ijmst.2014.12.007
  25. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H. and Wei, C. (2021), "Investigation of the rockburst mechanism of driving roadways in close-distance coal seam mining using numerical modeling method", Mining, Metallurgy & Exploration, 38(5), 1899-1921. https://doi.org/10.1007/s42461-021-00471-2
  26. Wang, J., Apel, D.B., Pu, Y., Hall, R., Wei, C. and Sepehri, M. (2021), "Numerical modeling for rockbursts: A state-of-the-art review", J. Rock Mech. Geotech. Eng., 13(2), 457-478. https://doi.org/10.1016/j.jrmge.2020.09.011
  27. Wang, J., Ding, C., Zhang, Y. and Wu, S. (2008), "Numerical analysis of effect of abandoned goaf foundation deformation on ground buildings", J Min Saf Eng., 25, 476-480. https://doi.org/10.3969/j.issn.1673-3363.2008.04.021.
  28. Xia, Z., Jiang, N., Yang, H., Han, L. and Feng, Q. (2020), "Effect of multiple hole distribution and shape based on particle flow on rocklike failure characteristics and mechanical behavior", Adv Civ. Eng., 2020(6), 1-13. https://doi.org/10.1155/2020/8822225.
  29. Yao, D.H., Jiang, N., Wang, X.J., Jia, X. and Lv, K. (2022), "Mechanical behaviour and failure characteristics of rocks with composite defects of different angle fissures around hole", B Eng. Geol. Environ., 81(7). https://doi.org/10.1007/s10064-022-02783-z.
  30. Zhang, B., Zhang, L., Yang, H., Zhang, Z. and Tao, J. (2016), "Subsidence prediction and susceptibility zonation for collapse above goaf with thick alluvial cover: a case study of the Yongcheng coalfield, Henan Province, China", Bull. Eng. Geol. Environ., 75, 1117-1132. https://doi.org/10.1007/s10064-015-0834-6.
  31. Zhang, X., Yu, H., Dong, J., Liu, S., Huang, Z., Wang, J. and Wong, H. (2017), "A physical and numerical model-based research on the subsidence features of overlying strata caused by coal mining in Henan, China", Environ Earth Sci., 76, 705. https://doi.org/10.1007/s12665-017-6979-9.
  32. Zhu, G., Xu, Z., Xie, C. and Guo, Y. (2014), "Study of influence functions of surface residual movement and deformation above old goaf", China J. Rock Mech. Geotech. Eng., 10, 962-1970. https://doi.org/10.13722/j.cnki.jrme.2014.10.003.