DOI QR코드

DOI QR Code

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao, Kong (College of Safety and Environmental Engineering, Shandong University of Science and Technology) ;
  • Sixiang, Zhu (College of Safety and Environmental Engineering, Shandong University of Science and Technology) ;
  • Wenrui, Zhang (College of Safety and Environmental Engineering, Shandong University of Science and Technology) ;
  • Xiaolei, Sun (College of Safety and Environmental Engineering, Shandong University of Science and Technology) ;
  • Wei, Lu (College of Safety and Environmental Engineering, Shandong University of Science and Technology) ;
  • Yankun, Ma (Engineering Technology Research Centre for Safe and Efficient Coal Mining (Anhui University of Science and Technology))
  • 투고 : 2020.11.06
  • 심사 : 2023.01.11
  • 발행 : 2023.01.25

초록

With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (51904172, 51974178), the China Postdoctoral Science Foundation (2020M682209), the Open Project Funding of the State Key Laboratory of Coal Mine Safety Technology (CCTEG-Shenyang-Research-Institute) (2022-KF-23-02), the Open Project Funding of Scientific Research and Development Platform of Technology of Disaster Prevention in Deep Coal Mines(SECM2202), the Qingdao West Coast New Area Science and Technology Benefiting People Project(2019-109)..

참고문헌

  1. Ali, M.., Wang, E.Y., Li, Z.H., Jia, H.S., Li, D.X., Jiskani, I.M. and Ullah, B. (2021), "Study on acoustic emission characteristics and mechanical behavior of water-saturated coal", Geofluids, https://doi.org/10.1155/2021/5247988.
  2. Barton, N. (2020), "A review of mechanical over-closure and thermal over-closure of rock joints: Potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development", Tunn. Undergr. Sp. Tech., https://doi.org/10.1016/j.tust.2020.103379.
  3. Cai, C.Z., Ren, K.D., Tao, Z.X., Xing, Y., Gao, F., Zou, Z.X. and Feng, Y.R. (2022), "Experimental investigation of the damage characteristics of high-temperature granite subjected to liquid nitrogen treatment", Nat. Resour. Res., 31(5), 2603-2627. https://doi.org/10.1007/s11053-022-10091-2.
  4. Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., 22(5), 385-396. https://doi.org/10.12989/gae.2020.22.5.385.
  5. Du, F., Wang, K., Guo, Y., Wang, G., Wang, L. and Wang, Y. (2020), "The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study", Geomech. Eng., 22(3), 255-264. https://doi.org/10.12989/gae.2020.22.3.255.
  6. Fan, L.F., Gao, J.W., Wu, Z.J., Yang, S.Q. and Ma, G.W. (2018), "An investigation of thermal effects on micro-properties of granite by x-ray ct technique", Appl. Therm. Eng., 140, 505-519. https://doi.org/10.1016/j.applthermaleng.2018.05.074.
  7. Feng, W.L.,Qiao, C.S., Wang, T., Yu, M.Y., Niu, S.J. and Jia, Z.Q. (2020), "Strain-softening composite damage model of rock under thermal environment", Bull. Eng. Geol. Environ., 79(8), 4321-4333. https://doi.org/10.1007/s10064-020-01808-9.
  8. Feng, Z., Wan, Z.J., Zhao, Y.S., Li, G.W., Yuan, Z. and Wang, C. (2010), "Experimental investigation into deformation characteristics of anthracite under thermo-mechanical coupling conditions", Chinese J. Rock Mech. Eng., 29(8), 1624-1630.
  9. Feng, Z.J., Zhao, Y.S., Zhang, Y. and Wan, Z.J. (2018), "Real-time permeability evolution of thermally cracked granite at triaxial stresses", Appl. Therm. Eng., 133, 194-200. https://doi.org/10.1016/j.applthermaleng.2018.01.037. 
  10. Gao, L.Y., Zhang, W.R., Lu, W., Hu, X.M., Wu, H., Wang, J.Q. and Kong, B. (2022), "Study on the effects of temperature and waterlogging on the acoustic emission and electromagnetic signal of coal rock damage under load", Eng. Geol., 297, 106503.
  11. Gong, Q., Xiang-Yun, H.U., Zhang, S.Y., Zhang, R. and Hao, X.Z. (2006), "Relationship between frequency of electromagnetic radiation induced by rock fracture and elastic parameters", Chinese J. Geophys., 49(5), 1368-1374. https://doi.org/10.1002/cjg2.961.
  12. He, M.C., Miao, J.L. and Feng, J.L. (2010), "Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions", Int. J. Rock Mech. Min. Sci., 47(2), 286-298. https://doi.org/10.1016/j.ijrmms.2009.09.003.
  13. He, X.Q., Chen, W.X., Nie, B.S. and Mitri, H. (2011), "Electromagnetic emission theory and its application to dynamic phenomena in coal-rock", Int. J. Rock Mech. Min. Sci., 48(8), 1352-1358. https://doi.org/10.1016/j.ijrmms.2011.09.004.
  14. Hu, Y.P., Wang, M.N., Wang, Z.L., Wang, Q.L. and Liu, D.G. (2020), "Mechanical behavior and constitutive model of shotcrete-rock interface subjected to heat damage and variable temperature curing conditions", Constr. Build. Mater., 263, 120171. https://doi.org/10.1016/j.conbuildmat.2020.120171.
  15. Kim, B.C., Chen, J. and Kim, J.Y. (2020), "Relation between crack density and acoustic nonlinearity in thermally damaged sandstone", Int. J. Rock Mech. Min. Sci., https://doi.org/10.1016/j.ijrmms.2019.104171.
  16. Kong, B., Li, Z.H., Wang, E.Y., Lu,W., Chen, L. and Qi, G.S. (2018a), "An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique", Process Saf. Environ. Protection, 119, 285-294. https://doi.org/10.1016/j.psep.2018.08.002.
  17. Kong, B., Liu, Z. and Yao, Q.G. (2021), "Study on the electromagnetic spectrum characteristics of underground coal fire hazardous and the detection criteria of high temperature anomaly area", Environ. Earth Sci., 80(3), 89. https://doi.org/10.1007/s12665-021-09380-5.
  18. Kong, B., Wang, E.Y, Li, Z.H. and Lu, W. (2019b), "Study on the feature of electromagnetic radiation under coal oxidation and temperature rise based on multi-fractal theory", Fractals, https://doi.org/10.1142/S0218348X19500385.
  19. Kong, B., Wang, E.Y. and Li, Z.H. (2018b), "Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating", Geomech. Eng., 15(5), 1125-1133. https://doi.org/10.12989/gae.2018.15.5.1125.
  20. Kong, B., Wang, E.Y. and Li, Z.H. (2018c), "The effect of high temperature environment on rock properties - an example of electromagnetic radiation characterization", Environ. Sci. Polluti. R., https://doi.org/10.1007/s11356-018-2940-z.
  21. Kong, B., Wang, E.Y., Li, Z.H., Wang, X.R., Liu, J. and Li, N. (2016), "Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions", Rock Mech. Rock Eng., 49(12), 4911-4918. https://doi.org/10.1007/s00603-016-1011-3.
  22. Kong, B., Wang, E.Y., Lu, W. and Li, Z.H. (2019c), "Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires", Energy, https://doi.org/10.1016/j.energy.2019.116144.
  23. Kong, X.G., Wang, E.Y., He, X.Q., Zhao, E.L. and Zhao, C. (2019a), "Mechanical characteristics and dynamic damage evolution mechanism of coal samples in compressive loading experiments", Eng. Fract. Mech., 210, 160-169. https://doi.org/10.1016/j.engfracmech.2018.04.005.
  24. Li, C., Wu, Z., Zhang, W., Sun, Y., Zhu, C. and Zhang, X. (2020), "A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques", Geomech. Eng., 22(5), 449-460. https://doi.org/10.12989/gae.2020.22.5.449.
  25. Liu, Z., Yao, Q.G., Kong, B. and Yin, J.L. (2020), "Macro-micro mechanical properties of building sandstone under different thermal damage conditions and thermal stability evaluation using acoustic emission technology", Constr. Build. Mater., https://doi.org/10.1016/j.conbuildmat.2020.118485.
  26. Molaro, J.L., Byrne, S. and Le, J.L. (2017), "Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown", Icarus, 294, 247-261. https://doi.org/10.1016/j.icarus.2017.03.008.
  27. Pang, H.D., Zhang, X.M. and Jiang, F.X. (2004), "Spectrum analysis of acoustic emission signal in rock materials", J. China Coal Soc., 29(5), 540-544.
  28. Qi, W., Shuo, X., Ke, G.H., Peng, Z., Bei, J. and Hong, L.B. (2020), "Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength", Geomech. Eng., 23(1), 61-69. https://doi.org/10.12989/gae.2020.23.1.061.
  29. Shao, H.D., Yang, S.Q. and Yang, K. (2022), "Effect of thermal damage on pore development and oxidation reaction of coal", Asci-pacific J. Chem. Eng., 17(3), https://doi.org/10.1002/apj.2774.
  30. Sirdesai, N.N., Singh, A., Sharma, L.K., Singh, R. and Singh, T.N. (2018), "Determination of thermal damage in rock specimen using intelligent techniques", Eng. Geol., 239, 179-194. https://doi.org/10.1016/j.enggeo.2018.03.027.
  31. Song, D., You, Q., Wang, E., Song, X., Li, Z., Qiu, L. andWang, S. (2019), "Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression", Geomech. Eng., 19(1), 49-60. https://doi.org/10.12989/gae.2019.19.1.049.
  32. Song, D.Z., Wang, E.Y., Song, X.Y., Jin, P.J. and Qiu, L.M. (2016), "Changes in frequency of electromagnetic radiation from loaded coal rock", Rock Mech. Rock Eng., 49(1), 291-302. https://doi.org/10.1007/s00603-015-0738-6.
  33. Song, Z.Y. and Kuenzer, C. (2017), "Spectral reflectance (400-2500 nm) properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: a case study of wuda coalfield and its surrounding areas, northern china", Int. J. Coal Geol., 171, 142-152. https://doi.org/10.1016/j.coal.2017.01.008.
  34. Sun, Q., Lu, C., Cao, L.W., Li, W.C., Geng, J.S. and Zhang, W.Q. (2016), "Thermal properties of sandstone after treatment at high temperature", Int. J. Rock Mech. Min. Sci., 85, 60-66. https://doi.org/10.1016/j.ijrmms.2016.03.006.
  35. Tian, H., Kempka, T., Xu, N.X. and Ziegle, M. (2012), "Physical properties of sandstones after high temperature treatment", Rock Mech. Rock Eng., 45(6), 1113-1117. https://doi.org/10.1007/s00603-012-0228-z.
  36. Wang, D., Zhang, P., Wei, J. and Yu, C. (2020), "The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures", J. Nat. Gas Sci. Eng,, https://doi.org/10.1016/j.jngse.2020.103242.
  37. Wang, E.Y., He, X.Q., Liu, Z.T. and Zhou, S.N. (2003), "Frequency spectrum characteristics of electromagnetic emission of loaded coal", J. China Univ. Min. Tech., 32(5), 487-490. https://doi.org/10.3321/j.issn:1000-1964.2003.05.005
  38. Wang, E.Y., He, X.Q., Wei, J.P., Nie, B.S. and Song, D.Z. (2011), "Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses", Int. J. Rock Mech. Mining Sci., 48(4), 556-564. https://doi.org/10.1016/j.ijrmms.2011.02.006.
  39. Wang, E.Y., Jia, H.L., Song, D.Z., Li, N. and Qian, W.H. (2014), "Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines", Int. J. Rock Mech. Min. Sci., 70, 16-25. https://doi.org/10.1016/j.ijrmms.2014.02.004.
  40. Xi.,B.P., Zhao, Y.S.,Wan, Z.J., Zhao, J.C. and Wang, Y. (2009), "Study of constitutive equation of granite rheologital model with thermo-mechanical coupling effects", Chinese J. Rock Mech Eng., 28(5), 956-967.
  41. Xiao, Y., Lu, J.H., Wang, C.P. and Deng, J. (2016), "Experimental study of high-temperature fracture propagation in anthracite and destruction of mudstone from coalfield using high-resolution microfocus x-ray computed tomography", Rock Mech. Rock Eng., 49(9), 3723-3734. https://doi.org/10.1007/s00603-016-1006-0.
  42. Xin, L., Cheng, W.M., Xie, J., Liu, W.T. and Xu, M. (2019), "Theoretical research on heat transfer law during underground coal gasification channel extension process", Int. J. Heat Mass Transfer, 142, https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.059.
  43. Yang, Y.L., Zheng, K.Y., Li, Z.W., Li, Z.H., Si, L.L., Hou, S.S. and Duan, Y.J. (2019), "Experimental study on pore-fracture evolution law in the thermal damage process of coal", Int. J. Rock Mech. Min. Sci., 116, 13-24. https://doi.org/10.1016/j.ijrmms.2019.03.004.
  44. Yu, L.Y., Li, G.L., Su, H.J., Jing, H.W. and Zhang, T. (2017), "Experimental study on static and dynamic mechanical properties of anthracite after high temperature heating", Chinese J. Rock Mech. Eng., 36(11), 2712-1719.
  45. Yu, S.J., Zhang, X.Y., Zhang, B. and Kong, B. (2020), "Research on inversion and application of failure depth of coal seam roof and floor based on triangular network acoustic CT tomography", Environ. Earth Sci., https://doi.org/10.1007/s12665-020-09090-4.
  46. Zhang, D.M., Yang, Y.S., Yang, H., Chu, Y.P. and Yang, S. (2018), "Experimental study on the effect of high temperature on the mechanical properties and acoustic emission characteristics of gritstone", Results Phys., 9, 1609-1617. https://doi.org/10.1016/j.rinp.2018.05.013.
  47. Zhang, J.W. and Li, Y.L. (2017), "Ultrasonic vibrations and coal permeability:laboratory experimental investigations and numerical simulations", Int. J. Min. Sci. Technol., 27(2), 221-228. https://doi.org/10.1016/j.ijmst.2017.01.001.
  48. Zhang, Q., Li, X.C., Gao, J.X., Jia, S.Y. and Ye, X.W. (2022), "Macro- and meso-damage evolution characteristics of coal using acoustic emission and keuence testing technique", Nat. Resour. Res., 31(1), 517-534. https://doi.org/10.1007/s11053-021-10006-7.
  49. Zhang, W., Qu, Z.Q., Guo, T.K. and Wang, Z.Y. (2019), "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress", Renew. Energ., 143, 855-872. https://doi.org/10.1016/j.renene.2019.05.054.
  50. Zhang, Y.L., Zhao, G.F. and Li, Q. (2020), "Acoustic emission uncovers thermal damage evolution of rock", Int. J. Rock Mech. Min. Sci., 132, 104388. https://doi.org/10.1016/j.ijrmms.2020.104388.