DOI QR코드

DOI QR Code

질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources

  • 김태헌 (경북대학교 생태환경대학 식물자원학과) ;
  • 김석만 (경북대학교 생태환경대학 식물자원학과)
  • Tae-Heon Kim (Department of Crop Science, College of Ecological and Environmental System, Kyungpook National University) ;
  • Suk-Man Kim (Department of Crop Science, College of Ecological and Environmental System, Kyungpook National University)
  • 투고 : 2023.11.15
  • 심사 : 2023.11.29
  • 발행 : 2023.12.01

초록

질소비료 감비시 수량 감소의 요인과 관련 특성 개량 및 유전자탐색을 위한 유전자원을 제시하기 위해 153개 벼유전자원에 대한 수량 및 수량구성요소의 변이를 분석한 결과는 다음과 같다. 1. 공시된 유전자원은 질소비료 시비 수준이 9 kg/10a에서 4.5 kg/10a로 감소하였을 때 수량, 수량구성요소 및 주요농업형질은 유의한 차이를 나타내었으며, 이중 DTH, CL, PL, GYP, NPP 및 NSP는 1.8~17.9% 감소하였고 나머지 TGW, PRG는 2.6~11.2% 증가하였다. 2. 이원분산분석결과 GYP 및 수량구성요소인 NPP, PRG는 질소비료 시비 수준에 따른 유의성을 보였으나 수량 구성요소인 NSP와 TGW는 유의성이 없었다. 3. NN조건에서 NPP는 NSP (-0.44), TGW (-0.49)와 음의 상관관계를 보였고 TGW는 PRG (-0.34)와 음의 상관관계를 나타내었다. 이와는 반대로 GYP는 PRG (0.37)와 NSP (0.38)간에 양의 상관관계를 나타내었다. LN조건에서도 유사한 양상을 나타내었으나 NPP와 PRG (0.32)간에 양의 상관관계가 추가되었다. 4. 질소비료 감비시 수량 감소의 요인을 분석한 결과 LN조건에서 PA1은 NPP, TGW, PRG 가 높은 요인부하량을 보였는데 NPP의 감소는 TGW를 증가시키고 PRG는 감소시켰다. PA2에서는 NSP와 GYP가 높은 요인부하량을 보였고, NSP의 증가가 GYP를 증가시켰다. 5. 질소비료 감비시 NPP가 가장 높고 감소율은 가장 낮은 인디카형 중에서 NPP 또는 NSP가 높은 CHIEM CHANK외 7개 유전자원을 선발하였다. 6. 이 결과를 바탕으로 질소비료 감비시 수량이 감소하는 가장 큰 요인은 NPP와 NSP의 감소였는데 그 결과 수수형 또는 수중형인 질소비료 감비 적응 품종 육성을 통해 수량성을 유지시킬 수 있을 것으로 판단된다. 또한 선발된 CHIEM CHANK 외 7개 유전자원들은 질소비료 감비 적응 관련 특성 개량 및 유전자탐색을 위한 육종소재로서 이용될 수 있을 것이다.

Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

키워드

과제정보

본 논문은 농촌진흥청 연구사업(과제번호: RS-2022-RD010269)의 지원에 의해 이루어진 것입니다.

참고문헌

  1. Barton, L. and T. D. Colmer. 2006. Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass. Agric. Water Manag. 80(1-3) : 160-175.  https://doi.org/10.1016/j.agwat.2005.07.011
  2. Chen, Z. C. and J. F. Ma. 2015. Improving Nitrogen Use Efficiency in Rice through Enhancing Root Nitrate Uptake Mediated by a Nitrate Transporter, NRT1.1B. Journal of Genetics and Genomics. 42(9) : 463-465.  https://doi.org/10.1016/j.jgg.2015.08.003
  3. Cho, Y. I. and H. J. Koh. 2007. Physiological nitrogen use efficiency and agronomic characters of breeding lines in rice. Korean J. Breed. Sci. 39(1) : 33-38. 
  4. Choi, J. S., J. Lee, S . Kang, D. W. Lee, W. Yang, S. K. Lee, S. H. Sin, and M. T. Kim. 2022. Response of yield and quality in major domestic rice (Oryza sativa L.) varieties according to the nitrogen application levels. Korean J. Crop Sci. 67(4) : 342-361. 
  5. Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia. 78(1) : 9-19.  https://doi.org/10.1007/BF00377192
  6. Field, C. and H. A. Mooney. 1986. The photosynthesis - nitrogen relationship in wild plants. In: T Givnish, ed. On the economy of plant form and function. New York, NY, USA: Cambridge University Press. pp. 25-55. 
  7. Fischer, G., W. Winiwarter, T. Ermolieva, G. Y. Cao, H. Qui, Z . Klimont, D. Wiberg, and F. Wagner. 2010. Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China. Agriculture, Ecosystems and Environment. 136(1-2) : 116-124.  https://doi.org/10.1016/j.agee.2009.12.004
  8. Fukushima, A. and M. Kusano. 2014. A network perspective on nitrogen metabolism from model to crop plants using integrated 'omics' approaches. Journal of Experimental Botany. 65(19) : 5619-5630.  https://doi.org/10.1093/jxb/eru322
  9. Gheysari, M., S. M. Mirlatifi, M. Homaee, M. E. Asadi, and G. Hoogenboom. 2009. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 96(6) : 946-954.  https://doi.org/10.1016/j.agwat.2009.01.005
  10. Hirel, B., J. Le Gouis, B. Ney, A. Gallais. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany. 58(9) : 2369-2387.  https://doi.org/10.1093/jxb/erm097
  11. Huang, J. and S. Peng. 2004. Comparison and standardization among chlorophyll meters in their readings on rice leaves. Plant Production Science. 7(1) : 97-100.  https://doi.org/10.1626/pps.7.97
  12. Huang, Y. and Y. H. Tang. 2010. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. Global Change Biol. 16(11) : 2958-2970.  https://doi.org/10.1111/j.1365-2486.2010.02187.x
  13. Kato, M., K. Kobayashi, E. Ogiso, and M. Yokoo. 2004. Photosynthesis and dry-matter production during ripening stage in a female-sterile line of rice. Plant Production Science. 7(2) : 184-188.  https://doi.org/10.1626/pps.7.184
  14. Kim, G. W., J. Gutierrez-Suson, and P. J. Kim. 2019. Optimum N rate for grain yield coincides with minimum greenhouse gas intensity in flooded rice fields. Field Crops Research. 237 : 23-31.  https://doi.org/10.1016/j.fcr.2019.04.011
  15. Kim, Y. D., M. K. Choi, K. D. Lee, M. G. Baek, B. I. Ku, S. G. Kang, H. K. Park, and B. K. Kim. 2012. Growth and yield of rice in levels of nitrogen and water management of reclaimed saline soil in southwestern area. Korean J. Crop Sci. 57(3) : 203-208.  https://doi.org/10.7740/kjcs.2012.57.3.203
  16. Kumagai, E., A. Araki, and F. Kubota. 2009. Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Production Science. 12(1) : 50-53.  https://doi.org/10.1626/pps.12.50
  17. Lee, C. H., U. G. Kang, K. D. Park, D. K. Lee, and P. J. Kim. 2008. Long-term fertilization effects on rice productivity and nutrient efficiency in Korean paddy. Journal of Plant Nutrition. 31(8) : 1496-1506.  https://doi.org/10.1080/01904160802208675
  18. Lin, X., D. Zhu, H. Chen, S. Cheng, and N. Uphoff. 2009. Effect of plant density and nitrogen fertilizer rates on grain yield and nitrogen uptake of hybrid rice (Oryza sativa L.). Journal of Agricultural Biotechnology and Sustainable Development. 1(2) : 44-53.  https://doi.org/10.1016/S1672-6308(08)60070-0
  19. Manzoor, Z., T. Awan, M. Zahid, and F. Faiz. 2006. Response of rice crop (super basmati) to different nitrogen levels. J Anim. Pl. Sci. 16(1-2) : 52-55. 
  20. Mulvaney, R. L., S. A. Khan, and T. R. Ellsworth. 2009. Synthetic Nitrogen Fertilizers Deplete Soil Nitrogen: A Global Dilemma for Sustainable Cereal Production. Journal of Environmental Quality. 38(6) : 2295-2314. https://doi.org/10.2134/jeq2008.0527
  21. Park, H. K., M. G. Choi, T. S. Park, B. I. Ku, Y. D. Kim, J. K. Ko, W. Y. Choi, and B. K. Kim. 2009. Effect of low nitrogen fertilizer application on growth, yield and quality of rice. Korean J. Intl. Agri. 21(4) : 252-260. 
  22. Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin, and W. D. Bowman. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology. 80(6) : 1955-1969.  https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
  23. Robertson, G. P. and P. M. Vitousek. 2009. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annual Review of Environment and Resources. 34 : 97-125.  https://doi.org/10.1146/annurev.environ.032108.105046
  24. Rogelj, J., O. Geden, A. Cowie, and A. Reisinger. 2021. Three ways to improve net-zero emissions targets. Nature. 591(7850) : 365-368.  https://doi.org/10.1038/d41586-021-00662-3
  25. Rural Development Administration (RDA). 2012. Manual for standard evaluation method in agricultural experiment and research. Suwon, Korea. pp. 78-132. 
  26. Schimel, J. 2000. Rice, microbes and methane. Nature. 403(6768) : 375-377.  https://doi.org/10.1038/35000325
  27. Smil, V. 2002. Nitrogen and food production: proteins for human diets. AMBIO: A Journal of the Human Environment. 31(2) : 126-131.  https://doi.org/10.1579/0044-7447-31.2.126
  28. Smith, K. A. 2010. Nitrous oxide and climate change. Earthscan: London, UK. 256 p. 
  29. Ta, T. C. and K. Ohira. 1981. Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Science and Plant Nutrition. 27(3) : 347-355.  https://doi.org/10.1080/00380768.1981.10431289
  30. Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA. 108(50) : 20260-20264.  https://doi.org/10.1073/pnas.1116437108
  31. Tong, H. H., H. W. Mei, X. Q. Yu, X. Y. Xu, M. S. Li, S. Q. Zhang, and L. J. Luo. 2006. Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genetica Sinica. 33(5) : 458-467.  https://doi.org/10.1016/S0379-4172(06)60073-5
  32. Van Keulen, H. 1977. Nitrogen requirements of rice with special reference to Java. Contrib. Cent. Res. Inst. Agric. Bogor. 30 : 1-67. 
  33. Wang, Y., D. Wang, P. Shi, and K. Omasa. 2014. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 10 : 1-11.  https://doi.org/10.1186/1746-4811-10-1
  34. Wei, D., K. H. Cui, J. F. Pan, G. Y. Ye, J. Xiang, L. X. Nie, and J. L. Huang. 2011. Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice. Field Crops Research. 124(3) : 340-346.  https://doi.org/10.1016/j.fcr.2011.07.003
  35. Xuejun, L. and Z. Fusuo. 2011. Nitrogen fertilizer induced greenhouse gas emissions in China. Current Opinion in Environmental Sustainability. 3(5) : 407-413.  https://doi.org/10.1016/j.cosust.2011.08.006
  36. Zhang, X. X., X. Xu, Y. L. Liu, J. Y. Wang, and Z. Q. Xiong. 2016. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency. Biogeosciences. 13(9) : 2701-2714.  https://doi.org/10.5194/bg-13-2701-2016
  37. Zhao, C., G. Liu, Y. Chen, Y. Jiang, Y. Shi, L. Zhao, P. Liao, W. Wang, K. Xu, and Q. Dai. 2022. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture. 12(7) : 962. 
  38. Zhou, C., Y. Huang, B. Jia, S. Wang, F. Dou, S. O. P. B. Samonte, K. Chen, and Y. Wang. 2019. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in northeast China. Agronomy. 9(9) : 555.