DOI QR코드

DOI QR Code

Ni-foam/Sn-3.0Ag-0.5Cu 복합 솔더 소재를 이용한 EV 파워 모듈 패키지용 천이 액상 확산 접합 연구

A Study of Transient Liquid Phase Bonding with Ni-foam/Sn-3.0Ag-0.5Cu Composite Solder for EV Power Module Package Application

  • 서영진 (충북대학교 신소재공학과) ;
  • 허민행 (충북대학교 신소재공학과) ;
  • 윤정원 (충북대학교 신소재공학과)
  • Young-Jin Seo (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Min-Haeng Heo (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jeong-Won Yoon (Department of Advanced Materials Engineering, Chungbuk National University)
  • 투고 : 2023.02.22
  • 심사 : 2023.03.14
  • 발행 : 2023.03.30

초록

본 연구에서는 서로 다른 Pore per inch (PPI, 1 inch 당 pore의 수)를 갖는 Ni-foam 사이에 Sn-3.0Ag-0.5Cu(wt.%, SAC305) 솔더 침지 공정을 수행하여 Ni-foam/SAC305 복합 솔더를 제조한 후, 이를 천이액상 확산 접합(Transient liquid Phase bonding, TLP bonding) 공정에 적용하여 형성된 접합부의 미세구조 분석 및 기계적 특성 평가가 수행되었다. 제조된 Ni-foam/SAC305 복합 솔더 프리폼 (Solder preform)은 Ni-foam 및 SAC305로 구성되었으며, Ni-foam 계면에는 (Ni,Cu)3Sn4 조성의 금속간 화합물이 형성되었다. TLP 접합 공정 수행 시, Ni-foam 계면의 금속간 화합물은 (Ni,Cu)3Sn4+Au로 변환 되었으며, 접합 시간이 증가할수록 Ni-foam과 SAC305가 지속적으로 반응하면서 접합부는 금속간 화합물로 변환되었다. 130 PPI Ni-foam/SAC305 복합 솔더 접합부가 가장 빠른 속도로 금속간 화합물로 변화되는 것을 확인하였다. 기계적 특성에 미치는 Ni-foam의 영향을 확인하기 위해 전단 시험 수행 결과, TLP 접합 초기에 모든 조건의 솔더 접합부는 50 MPa 이상의 우수한 기계적 특성을 나타내었으며, 접합 시간이 증가할수록 전단 강도는 증가하는 경향을 나타내었다.

In this study, Sn-3.0Ag-0.5Cu (wt.%, SAC305) solder dipping process was performed between Ni-foam skeleton with different pore per inch (PPI) to fabricate Ni-foam/SAC305 composite solder, and then applied to the transient liquid phase (TLP) bonding process to evaluate the microstructure and mechanical properties of the bonded joint. The Ni-foam/SAC305 composite solder preform consisted of Ni-foam and SAC305, and an intermetallic compound (IMC) having a (Ni,Cu)3Sn4 composition was formed at the Ni-foam interface. During TLP bonding process, the IMC at the Ni-foam interface was converted to (Ni,Cu)3Sn4+Au, and as the bonding time increased, the Ni-foam and SAC305 continuously reacted, and the bonded joint was converted into an IMC. And it was confirmed that the 130 PPI Ni-foam/SAC305 composite solder joint was converted into an IMC at the fastest rate. As a result of performing a shear test to confirm the effect of Ni-foam on mechanical properties, solder joints under all conditions exhibited excellent mechanical properties of 50 MPa or more in the early stages of the TLP bonding process, and the shear strength tends to increase as the bonding time increases.

키워드

과제정보

논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원(P0008458, 2022년 산업혁신인재성장지원사업)의 지원과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2021R1A2C1009714)을 받아 작성되었습니다.

참고문헌

  1. K. Y. Kim, K. D. Min, Y. I. Kim, J. W. Yoon, and S. B. Jung, "The effect of environmental test on the shear strength of the ultrasonic bonded Cu terminal for power module", J. Weld. Join., 37(2), 1-6 (2019). https://doi.org/10.5781/JWJ.2019.37.2.1
  2. D. H. Jung, M. H. Roh, J. H. Lee, K. H. Kim, and J. P. Jung, "Transient Liquid Phase (TLP) Bonding of device for high temperature operation", J. Microelectron. Electron. Packag., 24(1), 17-25 (2017). https://doi.org/10.6117/kmeps.2017.24.1.017
  3. S. J. Baek, G. W. Jeong, J. H. Son, M. S. Kim, H. B. R. Lee, J. S. Kim, and Y. H. Ko, "Interfacial re actions and mechanical properties of transient liquid-phase bonding joints in Cu/Sn/Ni (P) and Ni/Sn/(OSP) Cu structures for power modules", J. Mater. Sci.: Mater. Electron, 32, 3324-3333 (2021). https://doi.org/10.1007/s10854-020-05080-1
  4. Y. Cheon, "Review of global carbon neutral strategies and technologies", J. Korean Soc., 59(1), 99-112 (2022). https://doi.org/10.32390/ksmer.2022.59.1.099
  5. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim, and C. W. Lee, "Power module packaging technology with extended reliability for electric vehicle applications", J. Microelectron. Electron. Packag., 21(4), 1-13 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  6. H. J. Kang and J. P. Jung, "TLP and wire bonding for power module", J. Microelectron. Electron. Packag., 26(4), 7-13 (2019).
  7. I. Nistor, A. Mihaila, M. Rahimo, L. Storasta, and C. Corvasce, "Wide bandgap power devices in megawatt applications", Power Electronics Europe, 4, 35 (2012).
  8. M. K. Kim and S. W. Yoon, "Miniaturized design of a piezoelectric thermal sensor optimized for the integration to wide bandgap power modules operating at high temperatures", In 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 767-771 (2017).
  9. L. Yang, Y. Xiong, Y. Zhang, W. Jiang, and D. Wei, "Microstructure and shear property of In-Sn-xAg solder joints fabricated by TLP bonding", J. Mater. Sci.: Mater. Electron., 30, 18211-18219 (2019). https://doi.org/10.1007/s10854-019-02175-2
  10. W. S. Hong and C. M. Oh, "Degradation behavior of solder joint and implementation technology for lead-free automotive electronics", J. Weld. Join., 31(3), 22-30 (2013). https://doi.org/10.5781/KWJS.2013.31.3.22
  11. J. H. Son, M. K. Kim, D. Y. Yu, Y. H. Ko, J. W. Yoon, C. W. Lee, Y. B. Park, and J. H. Bang, "Thermal aging characteristics of Sn-xSb solder for automotive power module", J. Weld. Join., 35(5), 38-47 (2017). https://doi.org/10.5781/JWJ.2017.35.5.6
  12. N. Y. Lee, J. H. Lee, and C. Y. Hyun, "Chip sinter-bonding using Ag-based paste for power semiconductor devices", J. Weld. Join., 37(5), 482-492 (2019). https://doi.org/10.5781/JWJ.2019.37.5.8
  13. H. Feng, J. Huang, X. Peng, Z. Lv, Y. Wang, J. Yang, S. Chen, and X. Zhao, "Microstructural evolution of Ni-Sn transient liquid phase sintering bond during high-temperature aging", J. Electron. Mater., 47, 4642-4652 (2018). https://doi.org/10.1007/s11664-018-6336-0
  14. H. Xu, Y. Shen, Y. Hu, J. Li, and J. Xu, "Fabrication of highly reliable joint based on Cu/Ni/Sn double-layer powder for high temperature application", J. Microelectron. Electron. Packag., 16(4), 188-195 (2019). https://doi.org/10.4071/imaps.960671
  15. J. F. Silvain, L. Constantin, J. M. Heintz, S. Bordere, L. Teule-Gay, Y. F. Lu, J. L. Diot, R. D. Langlade, and E. Feuillet, "Controlling interfacial exchanges in liquid phase bonding enables formation of strong and reliable Cu-Sn soldering for high-power and temperature applications", ACS Appl. Electron. Mater., 3(2), 921-928 (2021). https://doi.org/10.1021/acsaelm.0c01040
  16. D. Ishikawa, B. N. An, M. Mail, H. Wurst, B. Leyrer, T. Blank, M. Weber, S. Ueda, H. Nakako, and Y. Kawana, "Analysis of bonding interfaces of pressureless-sintered Cu on metallization layers", In 2019 International Conference on Electronics Packaging (ICEP), 167-172 (2019).
  17. D. H. Lee, M. H. Heo, and J. W. Yoon, "Recent studies of transient liquid phase bonding technology for electric vehicles", J. Weld. Join., 40(3), 233-241 (2022). https://doi.org/10.5781/JWJ.2022.40.3.4
  18. J. H. Lee, D. H. Jung, and J. P. Jung, "Transient liquid phase diffusion bonding technology for power semiconductor packaging", J. Microelectron. Electron. Packag., 25(4), 9-15 (2018).
  19. Z. Li, M. Li, Y. Xiao, and C. Wang, "Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves", Ultrason Sonochem., 21(3), 924-929 (2014). https://doi.org/10.1016/j.ultsonch.2013.09.020
  20. J. W. Yoon, M. H. Heo, Y. J. Seo, D. H. Lee, M. S. Jeong, and H. T. Kim, "Semiconductor device bonding material comprising solder-coated metal foam", Korea patent 10-2022-0126915, filed October 4, 2022.
  21. W. Zhang, Y. Cao, J. Huang, W. Zhao, X. Liu, M. Li, and H. Ji, "Ultrasonic-accelerated metallurgical reaction of Sn/Ni composite solder: Principle, kinetics, microstructure, and joint properties", Ultrason Sonochem., 66, 105090 (2020).
  22. H. Feng, J. Huang, J. Zhang, X. Zhai, X. Zhao, and S. Chen, "High temperature resistant Ni-Sn transient liquid phase sintering bonding for new generation semiconductor power electronic devices", In 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), 1-4 (2015).