DOI QR코드

DOI QR Code

솔더 합금 종류 및 솔더 조인트의 신뢰성 평가 기법

Solder Alloy Types and Solder Joint Reliability Evaluation Techniques

  • 김유권 (한양대학교 융합기계공학과) ;
  • 김헌수 (한양대학교 융합기계공학과) ;
  • 김태완 (한양대학교 융합기계공학과) ;
  • 김학성 (한양대학교 융합기계공학과)
  • You-Gwon Kim (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Heon-Su Kim (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Tae-Wan Kim (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Hak-Sung Kim (Department of Mechanical Convergence Engineering, Hanyang University)
  • 투고 : 2023.03.02
  • 심사 : 2023.03.30
  • 발행 : 2023.03.30

초록

본 논문에서는 전자제품의 소형화와 고성능화에 따라 패키징 기술에서 핵심적인 역할을 하는 솔더 조인트의 신뢰성 평가 방법을 소개한다. 우선, 다양한 합금 조성과 제품 형태에 따른 솔더의 특성을 설명하고, 여러 패키지에서의 솔더 조인트 구조에 대한 개요를 제시한다. 그 다음 솔더 합금의 조성과 미시구조가 솔더의 열적 및 기계적 특성에 미치는 영향을 분석하며, 솔더 크리프 거동에 대해 간략히 소개한다. 이어서, 신뢰성 평가를 위한 크리프 모델과 피로 모델 등을 고려한 분석 기법들을 소개하고, 솔더 조인트의 신뢰성을 향상시킬 수 있는 방안에 대해 논의한다. 본 연구는 반도체 패키징 기술 분야에서 솔더 조인트의 신뢰성 평가와 개선에 유익한 정보를 제공할 것으로 기대된다.

In this paper, a method for evaluating the reliability of solder joints is introduced, as they play a crucial role in packaging technology due to the miniaturization and high-performance requirements of electronic device. Firstly, properties of solder based on various alloy compositions and solder types are described, followed by an analysis of solder joint structures in different packages. Next, the influence of solder alloy composition and microstructure on the thermal and mechanical properties of solder is analyzed, and solder creep behavior is briefly introduced. Subsequently, analytical techniques considering creep models and fatigue models for reliability evaluation are presented, and various ways to improve the reliability of solder joints are discussed. This study is expected to provide valuable information for evaluating and enhancing the reliability of solder joints in the semiconductor packaging technology field.

키워드

과제정보

This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20202020800360, Innovative Energy Remodeling Total Technologies(M&V, Design, Package Solutions, and Testing & Verifications Technologies) for the Aging Public Buildings). This research was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST) (2021M2E6A1084690), This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE)(20212020800090, Development and Demonstration of Energy-Efficiency Enhanced Technology for Temperature-Controlled Transportation and Logistics Center)

참고문헌

  1. 한국과학기술기획평가원 (KISTEP) 기술동향브리프, 반도체 후공정 (패키징), (2020).
  2. X. Zha, Numerical analysis of lead-free solder joints: Effects of thermal cycling and electromigration. Diss. Loughborough University, (2016).
  3. S.-K. Kang, D.-Y. Shih, and W. E. Bernier, "Flip-chip interconnections: past, present, and future", Advanced Flip Chip Packaging, 85-154, (2013).
  4. W. H. Zhong, Y. C. Chan, M. O. Alam, B. Y. Wu, and J. F. Guan, "Effect of multiple reflow processes on the reliability of ball grid array (BGA) solder joints", Journal of Alloys and Compounds, 414(1-2), 123-130 (2006). https://doi.org/10.1016/j.jallcom.2005.07.047
  5. J.-H. Lee, N.-H. Kang, C.-W. Lee, and J.-H. Kim, "Necessity of Low Melting Temperature Pb-free Solder Alloy and Characteristics of Representative Alloys", Journal of KWS, 24(2), 17-28 (2006).
  6. C. Basaran and J. Jiang, "Measuring intrinsic elastic modulus of Pb/Sn solder alloys", Mechanics of Materials, 34(6), 349- 362 (2002). https://doi.org/10.1016/S0167-6636(02)00131-X
  7. H. Tang and C. Basaran, "Influence of microstructure coarsening on thermomechanical fatigue behavior of Pb/Sn eutectic solder joints", International Journal of Damage Mechanics, 10(3), 235-255 (2001). https://doi.org/10.1106/kfd9-xr1f-vnve-95xn
  8. T. R. Bieler, H. Jiang, L. P. Lehman, T. Kirkpatrick, E. J. Cotts, and B. Nandagopal, "Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints", IEEE Transactions on Components and Packaging Technologies, 31(2), 370-381 (2008). https://doi.org/10.1109/TCAPT.2008.916835
  9. B. Wu, Y.-H. Yang, B. Han, and J. Schumacher, "Measurement of anisotropic coefficients of thermal expansion of SAC305 solder using surface strains of single grain with arbitrary orientation", Acta Materialia, 156, 196-204 (2018). https://doi.org/10.1016/j.actamat.2018.06.032
  10. W. Dong, Y. Shi, et al. "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy", Journal of Electronic Materials, 37, 982-991 (2008). https://doi.org/10.1007/s11664-008-0458-8
  11. Z. Wang, Q. K. Zhang, et al., "Influences of Ag and In alloying on Sn-Bi eutectic solder and SnBi/Cu solder joints", Journal of Materials Science: Materials in Electronics, 30, 18524- 18538 (2019). https://doi.org/10.1007/s10854-019-02206-y
  12. H.-J Kang, B.-G Baek, and J.-P Jung, "Recent Low Temperature Solder of SnBi and Its Bonding Characteristics", Journal of Welding and Joining, 38(6), 576-583 (2020). https://doi.org/10.5781/JWJ.2020.38.6.8
  13. B. P. Kashyap and G. S. Murty, "Experimental constitutive relations for the high temperature deformation of a Pb Sn eutectic alloy", Materials Science and Engineering, 50(2), 205-213 (1981). https://doi.org/10.1016/0025-5416(81)90179-8
  14. K. Mishiro, S. Ishikawa, M. Abe, and T. Kumai, "Effect of the drop impact on BGA/CSP package reliability", Microelectronics Reliability, 2(1), 77-82 (2002). https://doi.org/10.1016/S0026-2714(01)00230-X
  15. M. Amagai, "Chip scale package (CSP) solder joint reliability and modeling", Microelectronics Reliability, 9(4), 463-477 (1999). https://doi.org/10.1016/S0026-2714(99)00017-7
  16. X. Fan, "Wafer level packaging (WLP): fan-in, fan-out and three-dimensional integration", 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE, (2010).
  17. P. H. Wang, Y. C. Lee, C. K. Lee, et al., "Solder joint reliability assessment and pad size studies of FO-WLP with glass substrate", IEEE Transactions on Device and Materials Reliability, 1(1), 96-101 (2021). https://doi.org/10.1109/TDMR.2021.3056054
  18. J. S Hwang, "Solder paste in electronics packaging: technology and applications in surface mount, hybrid circuits, and component assembly", Springer Science & Business Media (2012).
  19. J.-W. Kim and S.-B. Jung, "Reexamination of the solder ball shear test for evaluation of the mechanical joint strength", International Journal of Solids and Structures, 3(7-8), 1928- 1945 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.014
  20. P. Hackes, A. F. Sprecher, and H. Conrad, "Computer simulation of thermo-mechanical fatigue of solder joints including microstructure coarsening", J. Electron. Packag., 115(2), 153- 158 (1993). https://doi.org/10.1115/1.2909311
  21. L. Anand, "Constitutive equations for hot-working of metals", International Journal of plasticity, 1(3), 213-231 (1985). https://doi.org/10.1016/0749-6419(85)90004-X
  22. S.-B. Brown, K.-H. Kim, and L. Anand, "An internal variable constitutive model for hot working of metals", International journal of plasticity, 5(2), 95-130 (1989). https://doi.org/10.1016/0749-6419(89)90025-9
  23. T. Y. Pan, " Thermal Cycling Induced Plastic Deformation in Solder Joints-Part I: Accumulated Deformation in Surface Mount Joints", J. Electron. Packag., 113(1), 8-15 (1991). https://doi.org/10.1115/1.2905373
  24. R. Darveaux and K. Banerji, "Fatigue analysis of flip chip assemblies using thermal stress simulations and a CoffinManson relation", 1991 Proceedings 41st Electronic Components & Technology Conference., IEEE (1991).
  25. X. Q. Shi, Z. P. Wang, Q. J. Yang, and H. L. J. Pang, "Creep behavior and deformation mechanism map of Sn-Pb eutectic solder alloy", J. Eng. Mater. Technol., 125(1), 81-88 (2003). https://doi.org/10.1115/1.1525254
  26. Y. Lee, and C. Basaran, "A creep model for solder alloys", J. Electron. Packag., 133(4), 044501 (2011).
  27. E. Komurlu, A. Kesimal, and A. D Demir, "Dog bone shaped specimen testing method to evaluate tensile strength of rock materials", Geomechanics and Engineering, 12(6), 883-898 (2017). https://doi.org/10.12989/gae.2017.12.6.883
  28. L. S. Kamaruzzaman, Y. Goh, "Microstructure and tensile properties of Sn-Bi-Co solder alloy", Journal of Materials Science: Materials in Electronics, 34(4), 312 (2023).
  29. Y. Wang, I. M. D. Rosa, and K.-N. Tu, "Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints", 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), IEEE (2015).
  30. P. Darbandi, T. R. Bieler, F. Pourboghrat, and T. Lee, "The effect of cooling rate on grain orientation and misorientation microstructure of SAC105 solder joints before and after impact drop tests", Journal of Electronic Materials, 43, 2521- 2529 (2014). https://doi.org/10.1007/s11664-014-3176-4
  31. Z. L. Ma, S. A. Belyakov, and C. M. Gourlay, "Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5 Cu solders", Journal of Alloys and Compounds, 682, 326-337 (2016). https://doi.org/10.1016/j.jallcom.2016.04.265
  32. Y. Zhang, Z. Cai, et al., "The effects of aging temperature on SAC solder joint material behavior and reliability", 2008 58th Electronic Components and Technology Conference, IEEE, (2008).
  33. X. J. Wang, Z. G. Wang, and J. K. Shang, "Effect of displacement rate on lap shear test of SAC solder ball joints", 2008 International Conference on Electronic Packaging Technology & High Density Packaging, IEEE (2008).
  34. D. Herkommer, J. Punch, and M. Reid, "Constitutive modeling of joint-scale SAC305 solder shear samples", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(2), 275-281 (2012). https://doi.org/10.1109/TCPMT.2012.2227481
  35. S. M. K. Hasan, M. AI. Ahsan, et al., "Creep and Microstructure Evolutions in SAC305 Lead Free Solder Subjected to Different Thermal Exposure Profiles", 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), IEEE, (2022).
  36. J. H. L. Pang, B. S. Xiong, and T. H. Low, "Creep and fatigue characterization of lead free 95.5 Sn-3.8 Ag-0.7 Cu solder", 2004 proceedings. 54th electronic components and technology conference (IEEE Cat. No. 04CH37546) (2004).
  37. J. A. Depiver, S. Mallik, and E. H. Amalu, "Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositions", Engineering Failure Analysis, 125, 105447 (2021).
  38. L. Jiang, W. Zhu, and H. He, "Comparison of darveaux model and coffin-manson model for fatigue life prediction of bga solder joints", 2017 18th International Conference on Electronic Packaging Technology (ICEPT), IEEE (2017).
  39. J. Li, H. Xu, J. Hokka, T. T. Mattila, et al., "Finite element analyses and lifetime predictions for SnAgCu solder interconnections in thermal shock tests", Soldering & Surface Mount Technology, 23(3), 161-167 (2011). https://doi.org/10.1108/09540911111146917
  40. B. Qiu, J. Xiong, H. Wang, S. Zhou, et al., "Survey on Fatigue Life Prediction of BGA Solder Joints", Electronics, 11(4), 542 (2022).
  41. P. Paris and F. Erdogan, "A critical analysis of crack propagation laws", J. Fluids Eng., 85(4), 528-533 (1963). https://doi.org/10.1115/1.3656900
  42. A. Lakshminarayana, A. Misrak, et al., "Impact of Viscoelastic Properties of Low Loss Printed Circuit Boards (PCBs) on Reliability of WCSP Packages Under Drop Test", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), IEEE, (2020).
  43. J. Gao and J. B. Kwak, "Reliability and thermal fatigue life prediction of solder joints for advanced automotive microelectronics", Journal of Mechanical Science and Technology, 35, 3633-3641 (2021). https://doi.org/10.1007/s12206-021-0734-6
  44. D.-H. Park and T.-S. Oh, "Reliability Characteristics of a Package-on-Package with Temperature/Humidity Test, Temperature Cycling Test, and High Temperature Storage Test", Journal of the Microelectronics and Packaging Society, 23(3), 43-49 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.043
  45. H. Chen, Y. Liu, S. Zhang, et al., "Effects of Sn-Ag-x leveling layers on the microstructure and shear behavior of Sn-58Bi solder joint under thermal cycling", Journal of Materials Science: Materials in Electronics, 34(3), 223 (2023).
  46. W. Liu and N.-C. Lee, "The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints", JOM 59, 26-31
  47. R. Khazaka, L. Mendizabal, et al., "Survey of high-temperature reliability of power electronics packaging components", IEEE Transactions on power Electronics, 30(5), 2456-2464 (2014). https://doi.org/10.1109/TPEL.2014.2357836
  48. J. Gong, "Microstructural features and mechanical behaviour of lead free solders for microelectronic packaging", Diss. Loughborough University, (2007).