DOI QR코드

DOI QR Code

Neuroprotective Effect of Gardeniae Fructus against Oxidative Damage Induced by tert-Butyl Hydroperoxide in PC12 Cells

PC12 cell에서 tert-butyl hydroperoxide로 유도된 산화적 손상에 대한 치자의 신경보호효과

  • Jong Rok, Lee (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Sang Chan, Kim (College of Korean Medicine, Daegu Haany University) ;
  • Sung Hui, Byun (College of Korean Medicine, Daegu Haany University) ;
  • Sook Jahr, Park (Department of Pharmaceutical Engineering, Daegu Haany University)
  • 이종록 (대구한의대학교 제약공학과) ;
  • 김상찬 (대구한의대학교 한의과대학(방제학 교실)) ;
  • 변성희 (대구한의대학교 한의과대학(방제학 교실)) ;
  • 박숙자 (대구한의대학교 제약공학과)
  • Received : 2023.02.08
  • Accepted : 2023.02.17
  • Published : 2023.02.28

Abstract

Objective : Gardeniae Fructus (GF) is the ripe fruit of Gardenia jasminoides Ellisa with a bitter taste and cold properties. Ingredient compounds including geniposide are known to have anti-inflammatory, antioxidant, and neuroprotective effects. The purpose of this study was to investigate the neuroprotective effect of GF on tBHP-induced PC12 cells. Methods : Cell viability was measured by the MTT assay, and apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression level of each protein was monitored by Western blot analysis, and reactive oxygen species (ROS) were analyzed using DCFH-DA. Results : In PC12 cells, tBHP induced cell death through apoptosis with caspase activation and PARP inactivation. Cells treated with tBHP showed an increase in intracellular ROS and depletion of GSH. Pretreatment with GF prevented tBHP-induced apoptosis, reduced ROS, and increased GSH. GF also maintained increased Nrf2 expression in the presence of tBHP. Phosphorylation of JNK and p38 MAPK was increased by tBHP, whereas phosphorylation of ERK was decreased. GF restored changes in ERK and p38 phosphorylation, but not JNK phosphorylation. Conclusion : These results indicate that GF has neuroprotective effects through anti-apoptotic and antioxidant effects mediated by regulation of Nrf2 expression and phosphorylation of ERK and p38. It also demonstrates the potential use of GF as a source of antioxidant and neuroprotective substances.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MOE) (No. 2017R1D1A3B03031863).

References

  1. Lipnicki DM, Crawford JD, Dutta R, Thalamuthu A, Kochan NA, Andrews G, et al. Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study. PLoS Med. 2017;14(3):e1002261.
  2. Hodges JR. Decade in review-dementia: a decade of discovery and disappointment in dementia research. Nat Rev Neurol. 2015;11(11):613-4. https://doi.org/10.1038/nrneurol.2015.191
  3. Yang Z, Liu J, Wei S, Deng J, Feng X, Liu S, et al. A novel strategy for bioactive natural products targeting NLRP3 inflammasome in Alzheimer's disease. Front Pharmacol. 2023;13:1077222.
  4. Kim IR. A research on the origin and daily dose of Gardeniae Fructus in Shanghanlun. Kor J Herbol. 2011;26(4):155-61. https://doi.org/10.6116/KJH.2011.26.4.155
  5. Shin YW, Kim DH, Kim NJ. Studies on the processing of crude drugs(7) - On the constituents and biological activities of Gardeniae Fructus by processing. Kor J Pharmacogn. 2003;34(1):45-54.
  6. Park CH, Kang SI. Processing of Herbal Medicines. Seoul:Chungmungak. 2002 : 15-19.
  7. Xiao W, Li S, Wang S, Ho CT. Chemistry and bioactivity of Gardenia jasminoides. J Food Drug Anal. 2017;25(1):43-61. https://doi.org/10.1016/j.jfda.2016.11.005
  8. Shan M, Yu S, Yan H, Guo S, Xiao W, Wang Z, et al. A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules. 2017;22(10):1689.
  9. Liu S, Lin Y, Huang T, Huang S, Peng WH. Anti-depressive activity of Gardeniae fructus and geniposide in mouse models of depression. Afr J Pharm Pharmacol. 2011;5:1580-8. https://doi.org/10.5897/AJPP11.335
  10. Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65-80. https://doi.org/10.1016/j.fct.2013.11.016
  11. Wang QS, Tian JS, Cui YL, Gao S. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience. 2014;275:365-73. https://doi.org/10.1016/j.neuroscience.2014.06.032
  12. Yu Y, Xie Z, Gao H, Ma W, Dai Y, Wang Y, et al. Bioactive iridoid glucosides from the fruit of Gardenia jasminoides. J Nat Prod. 2009;72:1459-64. https://doi.org/10.1021/np900176q
  13. Su C, Yang X, Lou J. Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res. 2016;1644:98-106. https://doi.org/10.1016/j.brainres.2016.05.011
  14. Yin D, Chen K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Exp Gerontol. 2005;40(6):455-65. https://doi.org/10.1016/j.exger.2005.03.012
  15. Lv J, Jiang S, Yang Z, Hu W, Wang Z, Li T, et al. PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev. 2018;44:8-21. https://doi.org/10.1016/j.arr.2018.03.004
  16. Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, et al. Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid Redox Signal. 2006;8(11-12):1975-86. https://doi.org/10.1089/ars.2006.8.1975
  17. Mandal PK, Roy RG, Samkaria A. Oxidative Stress: Glutathione and its potential to protect methionine-35 of Aβ peptide from oxidation. ACS Omega. 2022;7(31):27052-61. https://doi.org/10.1021/acsomega.2c02760
  18. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62(18):5196-203.
  19. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100:30-47. https://doi.org/10.1016/j.pneurobio.2012.09.003
  20. Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med. 2013;62:170-185. https://doi.org/10.1016/j.freeradbiomed.2012.09.016
  21. Martin C, Martinez R, Navarro R, Ruiz-Sanz JI, Lacort M, Ruiz-Larrea MB. tert-Butyl hydroperoxide-induced lipid signaling in hepatocytes: involvement of glutathione and free radicals. Biochem Pharmacol. 2001;62(6):705-12. https://doi.org/10.1016/S0006-2952(01)00704-3
  22. Davies MJ. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochem J. 1989;257(2):603-606. https://doi.org/10.1042/bj2570603
  23. An I, Kim SC, Byun SH, Lee JR, Park SJ. Anti-inflammatory effect of the processed Gardeniae Fructus in LPS-induced macrophages. Herb Formula Sci. 2019;.27(4):245-55.
  24. Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, et al. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med. 2020;24(1):671-85. https://doi.org/10.1111/jcmm.14776
  25. Sarkar MK, Sil PC. Prevention of tertiary butyl hydroperoxide induced oxidative impairment and cell death by a novel antioxidant protein molecule isolated from the herb, Phyllanthus niruri. Toxicol In Vitro. 2010;24(6):1711-9. https://doi.org/10.1016/j.tiv.2010.05.014
  26. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007. 35: 495-516. https://doi.org/10.1080/01926230701320337
  27. Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34:165-75.
  28. Yinjun L, Jie J, Weilai X, Xiangming T. Homoharringtonine mediates myeloid cell apoptosis via upregulation of pro-apoptotic bax and inducing caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). Am J Hematol. 2004;76(3):199-204. https://doi.org/10.1002/ajh.20100
  29. Wang YJ, Wang XY, Hao XY, Yan YM, Hong M, Wei SF, et al. Ethanol Extract of Centipeda minima Exerts Antioxidant and Neuroprotective Effects via Activation of the Nrf2 Signaling Pathway. Oxid Med Cell Longev. 2019;2019:9421037.
  30. Lee JR, Kim SC, Park SJ. Cytoprotective effect of the processed Gardeniae Fructus on oxidative stress-induced gastric epithelial cells. Kor J Herbol. 2023;38(1):21-30.
  31. Li S, Wang W, Niu T, Wang H, Li B, Shao L, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014:748524.
  32. Strom J, Chen QM. Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicol Appl Pharmacol. 2017;327:52-8. https://doi.org/10.1016/j.taap.2017.03.025