DOI QR코드

DOI QR Code

Editorial : COVID-19 infection and ginseng: Predictive influenza virus strains and non-predictive COVID-19 vaccine strains

  • Dong-Kwon, Rhee (School of Pharmacy, Sungkyunkwan University)
  • Published : 2023.03.02

Abstract

Vaccines help protect people from infections. However, Coronavirus 2019 (COVID-19) vaccinees often still become infected with COVID-19 variants (breakthrough infections) and may go on to suffer from long COVID symptoms due to short-lasting immunity and less-effective protection provided by available vaccines. Moreover, the current COVID-19 vaccines do not prevent viral transmission and ward off only about 15% of breakthrough infections. To prepare more effective vaccines, it is essential to predict the viral strains that will be circulating based on available epidemiological data. The World Health Organization recommends in advance which influenza strains are expected to be prevalent during influenza season to guide the production of influenza vaccines by pharmaceutical companies. However, future emerging COVID-19 strain(s) have not been possible to predict since no sound epidemiological information has been established. Thus, for more effective protection, immune stimulators alone or in combination with vaccines would be preferable to protect people from COVID-19 infection. One of those remedies would be ginseng, which has been used for potentiating immunity in the past.

Keywords

Acknowledgement

This work was supported by a National Research Foundation Grant of Korea (NRF-2018R1A2A1A05078102). The funding body played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. Collier AY, Yu J, McMahan K, Liu J, Chandrashekar A, Maron JS, Atyeo C, Martinez DR, Ansel JL, Aguayo R, et al. Differential kinetics of immune responses elicited by covid-19 vaccines. N Engl J Med 2021 Nov 18;385(21):2010-2. https://doi.org/10.1056/NEJMc2115596
  2. Suryawanshi RK, Chen IP, Ma T, Syed AM, Brazer N, Saldhi P, Simoneau CR, Ciling A, Khalid MM, Sreekumar B, et al. Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature 2022 Jul;607(7918):351-5. https://doi.org/10.1038/s41586-022-04865-0
  3. Dejnirattisai W, Huo J, Zhou D, Zahradnik J, Supasa P, Liu C, Duyvesteyn HME, Ginn HM, Mentzer AJ, Tuekprakhon A, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 2022 Feb 3;185(3):467-84. e15.
  4. Mannar D, Saville JW, Zhu X, Srivastava SS, Berezuk AM, Tuttle KS, Marquez AC, Sekirov I, Subramaniam S. SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science 2022 Feb 18;375(6582):760-4.
  5. VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe Jr JE, Purcell LA, Kawaoka Y, Corti D, Fremont DH, Diamond MS. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med 2022 Mar;28(3):490-5. https://doi.org/10.1038/s41591-021-01678-y
  6. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022 Feb;602(7898):657-63. https://doi.org/10.1038/s41586-021-04385-3
  7. Hoffmann M, Kruger N, Schulz S, Cossmann A, Rocha C, Kempf A, Nehlmeier I, Graichen L, Moldenhauer AS, Winkler MS, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 2022 Feb 3;185(3):447-56. e11. https://doi.org/10.1016/j.cell.2021.12.032
  8. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland WH, Porrot F, Staropoli I, Lemoine F, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022 Feb;602(7898):671-5. https://doi.org/10.1038/s41586-021-04389-z
  9. Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 vaccines: current and future perspectives. Vaccines (Basel) 2022 Apr 13;10(4):608.
  10. Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, Groome MJ, Huppert A, O'Brien KL, Smith PG, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet 2022 Mar 5;399(10328):924-44. https://doi.org/10.1016/S0140-6736(22)00152-0
  11. van Doremalen N, Purushotham JN, Schulz JE, Holbrook MG, Bushmaker T, Carmody A, Port JR, Yinda CK, Okumura A, Saturday G, et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci Transl Med 2021;13(607). Aug 18 eabh0755.
  12. Lund FE, Randall TD. Scent of a vaccine. Science 2021 Jul 23;373(6553):397-9. https://doi.org/10.1126/science.abg9857
  13. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021 Nov;21(11):694-703. https://doi.org/10.1038/s41577-021-00588-x
  14. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med 2022 Jul;28(7):1461-7. https://doi.org/10.1038/s41591-022-01840-0
  15. Callaway E. Fast-evolving COVID variants complicate vaccine updates. Nature 2022 Jul;607(7917):18-9. https://doi.org/10.1038/d41586-022-01771-3
  16. Seo SH. Ginseng protects ACE2-transgenic mice from SARS-CoV-2 infection. Front Biosci (Landmark Ed) 2022 Jun 6;27(6):180.