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a b s t r a c t

Hypercoagulability is frequently observed in patients with severe coronavirus disease-2019 (COVID-19).
Platelets are a favorable target for effectively treating hypercoagulability in COVID-19 patients as platelet
hyperactivity has also been observed. It is difficult to develop a treatment for COVID-19 that will be
effective against all variants and the use of antivirals may not be fully effective against COVID-19 as
activated platelets have been detected in patients with COVID-19. Therefore, patients with less severe
side effects often turn toward natural remedies. Numerous phytochemicals are being investigated for
their potential to treat a variety of illnesses, including cancer and bacterial and viral infections. Natural
products have been used to alleviate COVID-19 symptoms. Panax ginseng has potential for managing
cardiovascular diseases and could be a treatment for COVID-19 by targeting the coagulation cascade and
platelet activation. Using molecular docking, we analyzed the interactions of bioactive chemicals in
P. ginseng with important proteins and receptors involved in platelet activation. Furthermore, the
SwissADME online tool was used to calculate the pharmacokinetics and drug-likeness properties of the
lead compounds of P. ginseng. Dianthramine, deoxyharrtingtonine, and suchilactone were determined to
have favorable pharmacokinetic profiles.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus 2019 (COVID-19) is a global pandemic that has been
associated with a large number of fatalities. Although antiviral
drugs, such as remdesivir, have been approved by the United States
Food and Drug Administration (FDA) to treat COVID-19 [1], none
have shown mortality benefits [2]. Based on a systematic review by
Polak et al (2020), 45% of COVID-19 patients were found to have
capillary congestion, 39% had microthombi, and 26% had alveolar
fibrin deposits in pulmonary samples [3]. COVID-19 is widely un-
derstood to manifest as a pulmonary disease. However, studies
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have revealed various mechanisms of infection with SARS-CoV-2,
involving various extrapulmonary mechanisms that can cause
deep vein thrombosis, myocardial ischemia, acute kidney injury,
and even diarrhea [4]. Additionally, patients with COVID-19 have
been reported to have high levels of D-dimer, increased pro-
thrombin times, and lowplatelet counts [5]. The lowplatelet counts
may have been caused by the aggregation of platelets or the for-
mation of aggregates with other immune cells, such as neutrophils,
monocytes, and lymphocytes. In summary, the use of antivirals may
not be fully effective against COVID-19 as activated platelets have
been detected in patients with COVID-19 [6e8], which suggests
their role in the progression of COVID-19.

It is difficult to develop a treatment that will be effective against
all variants of SARS-CoV-2 [9]. Patients with less severe side effects
often turn to natural remedies, such as the Lianhua Qingwen
remedy [10] or natural products, like ginger [11]. Natural products
are easily available and are relatively less toxic than many drugs.
Therefore, natural products are often desired to ease the side effects
of COVID-19. Panax ginseng Meyer has been widely known for its
various health benefits. It is also well-known for its anti-platelet
is is an open access article under the CC BY-NC-ND license (http://creativecommons.
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activity [12]. We have recently summarized the potential benefits
of P. ginseng against cardiovascular disease and COVID-19 because it
targets the coagulation cascade and platelet activation [13]. In this
study, we aimed to further validate this benefit via molecular
docking to elucidate the potential treatment effects of P. ginseng
against platelet activation.
2. Materials and methods

2.1. Molecular docking of bioactive compounds from P. ginseng

Compounds of P. ginseng were obtained from TCMSP (https://
tcmsp-e.com). P. ginseng yields active compounds with an oral
bioavailability �30 and a drug-likeness �0.18 (Table 1). A “drug-
like” level of 0.18 is utilized as a criterion for selecting “drug-like”
compounds in traditional Chinese herbs [14]. The ligand file in
Structure Data File format was converted to MOL format using
Openbabel software. Molecular docking analysis was performed
using P-selecting, GPIba, and CD40L structure data from the protein
data bank (PDB) [15] with IDs 1g1s,1p9a, and 1aly, respectively. The
co-crystallized structures were prepared using UCSF Chimera
(Chimera, Version 1.12, RBVI, San Francisco, CA, USA) and iGEM-
DOCK (Version 2.1; NCTU, Hsinchu City, Taiwan). Flexible docking
was performed with iGEMDOCK using an accurate docking mode.
The best docked poses were further analyzed, and 3D structure
Table 1
Bioactive Compounds of Panax ginseng From Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCM-SP)

Molecule Name OB (%) DL

1 Dianthramine 40.44 0.19
2 Arachidonate 45.57 0.20
3 Aposiopolamine 66.64 0.21
4 Kaempferol 41.88 0.24
5 Girinimbin 61.21 0.31
6 Frutinone A 65.90 0.34
7 Diop 43.59 0.39
8 Celabenzine 101.88 0.48
9 Inermin 65.83 0.53
10 Suchilactone 57.51 0.55
11 Ginsenoside Rh2 36.31 0.55
12 Chrysanthemaxanthin 38.72 0.58
13 Malkangunin 57.71 0.62
14 Beta-sitosterol 36.91 0.75
15 Alexandrin 36.91 0.75
16 Stigmasterol 43.82 0.75
17 Ginsenoside Rh4 31.11 0.77
18 Ginsenoside Rg5 39.56 0.78
19 Panaxadiol 33.08 0.79
20 Deoxyharringtonine 39.27 0.81
21 Fumarine 59.26 0.82
22 Gomisin B 31.99 0.82

OB; oral bioavailability, DL; drug-likeness.

Table 2
Interaction of the Receptors of the PDBs (1g1s, 1p9a, and 1aly) With the Active Compou

Binding sites Ligands/compounds Total energy

P-selecting (1g1s) Ginsenoside Rh2 �108.90
Dianthramine �100.73
Deoxyharringtonine �93.26

GPIba (1p9a) Ginsenoside Rh2 �102.34
Deoxyharringtonin �98.70
Dianthramine �93.06

CD40L (1aly) Dianthramine �116.2
Ginsenoside Rh2 �112.5
Suchilactone �102.6

vdW; Van der Waals, HBond; hydrogen bond.
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images were prepared using UCSF Chimera. The platelet receptors
that were targeted are P-selecting, GPIb a, and CD40L as they were
suggested to be related to COVID-19-related hypercoagulation and
platelet hyperactivation [16e18].

2.2. Drug-likeness analysis

The SwissADME, a free web tool, was used to evaluate the
pharmacokinetics and drug-likeness (physicochemical and ADME
properties) of the P. ginseng compounds [19]. Briefly, the Canonical
SMILES for the chemical compounds were obtained from PubChem
(http://pubchem.ncbi.nlm.nih.gov/). The resulting Canonical
SMILES were used as input on the SwissADME website (http://
www.swissadme.ch/). The output files and images were imported
directly from the website. The BOILED-Egg (Brain Or IntestinaL
EstimateD permeation predictive) model provides a rapid and
straightforward evaluation for human intestinal absorption (HIA)
and blood-brain barrier (BBB) permeation. The BOILED-Egg pre-
dictive model computes the lipophilicity and polarity of the
chemical molecules and then outputs the WLOGP versus tPSA plot.
WherebyWLOGPwas the log Pmethod developed byWildman and
Crippen for calculating lipophilicity; tPSA was the topological polar
surface area for calculating polarity [19,20].

3. Results

Ginsenoside Rh2 was best docked with P-selecting and had the
lowest binding energy; i.e., �108.90 kcal/mol, among the other
screening compounds, followed by dianthramine and deoxy-
harringtonine with binding energies of �100.73 and �93.26 kcal/
mol, respectively (Table 2). These compounds were predicted to
interact with P-selecting mostly via van der Waals (vdW) contact
with amino acid residues LYS8, ALA9, LYS112, and HIS114
(Supplementary material 1).

P-selecting has a strong affinity for specific glycoprotein coun-
terreceptors, including P-selecting glycoprotein ligand-1 (PSGL-1).
The amino acid residues ARG85 and HIS114 in human P-selecting
form critical contacts with sulfates at TYR7 and TYR10 in PSGL-1
[21], whereas PSGL-1 TYR7 forms a backbone-to-backbone
hydrogen bond with the amide nitrogen of P-selecting LYS112
[21]. Aside from vdW contact, the docking revealed that hydrogen
bonds can be formed at LYS112 with eight compounds, including
ginsenoside Rg5, kaempferol, suchilactone, girinimbine, panax-
adiol, fumarine, and dianthramine. Furthermore, inermin, fumar-
ine, fruitinone A, gomisin B, arachidonate, celabenzine,
suchilactone, and dianthramine interacted with HIS114 via
hydrogen bonding. Dianthraminewas observed to interact with the
two amino acid residues via hydrogen bonding, as shown in Fig. 1.
These interactions suggest that the active compounds found in
P. ginseng could work collectively to directly or indirectly disrupt
the interaction between P-selecting and PSGL-1 (Fig. 2).
nds in Panax ginseng Extract

(kcal/mol) vdW (kcal /mol) HBond (kcal /mol)

�84.10 �24.80
�68.25 �30.29
�70.90 �22.36
�75.76 �26.57
�79.70 �19.00
�63.57 �29.74
�81.35 �33.19
�85.20 �27.26
�78.85 �23.77
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Fig. 1. Interaction between P-selecting (peach surface) and ginsenoside Rh2 (pink), dianthramine (blue), and deoxyharringtonine (yellow). Dashed lines indicate intermolecular
hydrogen bonds.

Fig. 2. Interaction between P-selecting (peach) and PSGL-1 (green), in the presence of docked ligands (ginsenoside Rh2, dianthramine, and deoxyharringtonine). Dashed lines
indicate intermolecular hydrogen bonds.
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The amino acid residues CYS20 and CYS33 are highly conserved
across a large variety of species, and substitution of these amino
acids appears to not be tolerated. Affected patients with biallelic
Bernard-Soulier syndrome have been reported to also have cysteine
amino acid substitutions in other cysteine amino acid residues in
the extracellular domain of the GPIba protein (CYS81 and CYS225),
indicating that cysteine amino acid substitutions likely affect pro-
tein structure and function [22]. The three chemical compounds
with the lowest binding energy may not directly affect binding of
the GP1ba protein with vdW.

Previous molecular docking simulation using ginsenoside Rg1
and GPIba showed that ginsenoside Rg1 forms a stable structure
with GPIba by creating hydrogen bonds with the LEU214, LYS189,
CYS211, GLU212, TYR215, ARG17, and THR266 residues of the GPIba
protein [23]. According to the author, this binding pattern implied
that ginseonoside Rg1 inhibits GPIba activity by occupying the
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amino acid N-terminal of GPIba. In our study, the binding of gin-
senoside Rh2, deoxyharringtonine, and dianthramine produced
binding energies of�102.3,�98.7, and�93.1 kcal/mol, respectively
(Table 2). The three compounds primarily interacted with common
residues on the GPIba protein; i.e., ASN134, GLU135, ASN157,
ASN158, ASN159, LEU160, GLU181, ASN182, and SER183
(Supplementary material 2). These binding sites, however, did not
correspond to the functional amino acids involved in the interac-
tion between GPIba and von Willebrand factor (vWF). The func-
tional amino acids that were identified as part of this interaction
were between positions 227 and 242 of platelet GPIba0s beta-
switch loop [24]. These results indicated the three chemical com-
pounds may have no direct effect on the GPIba protein's binding to
vWF (Fig. 3). As a result, the interaction between GPIba- vWF and
the docked compounds were not illustrated.



Fig. 3. Interaction and binding of ginsenoside Rh2 (pink), deoxyharringtonine (green), and dianthramine (blue) to GPIba (green surface). Dashed lines indicate intermolecular
hydrogen bonds.
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CD40L is expressed by activated platelets. CD40L's primary re-
ceptor is CD40, which is expressed constitutively on B cells, mac-
rophages, dendritic cells, neutrophils, endothelial cells, T-cells, and
platelets [25e27]. LYS143, GLY144, and TYR145 have been identi-
fied as CD40-CD40L interaction “hot spots” in CD40L. CD40L mu-
tants LYS143ALA and TYR145ALA bind significantly less to CD40
[28]. Based on structural modeling of the CD40eCD40L complex,
extended mutagenesis experiments contributed to the discovery of
additional residues in CD40L (TYR146, ARG203, and GLN220) and
CD40 (GLU74, and GLU117) that contribute to CD40eCD40L in-
teractions [29].
Fig. 4. The binding of dianthramine (blue), ginsenoside Rh2 (pink), and suchilactone (green
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The current study showed that dianthramine and suchilactone
were predicted to interact with CD40L at the interaction “hotspot”
for CD40-CD40L at residues LYS143, GLY144, and TYR145 (Fig. 4).
Particularly, dianthramine interacts with CD40L at TYR145 via a
hydrogen bond with free energy of �3.50 kcal/mol (Fig. 4), while
interactions with LYS143 and GLY144 via vdW contact had free
energy of �0.02 and �6.42 kcal/mol, respectively (Supplementary
material 3). Suchilactone interacts with CD40L through vdW con-
tact at LYS143, GLY144, and TYR145 with a free energy
of �10.26, �3.80, and �10.66 kcal/mol, respectively
(Supplementary material 3). Ginsenoside Rh2 mainly binds to
CD40L on residues that are less relevant to CD40-CD40L binding.
) to the CD40L (purple surface). Dashed lines indicate intermolecular hydrogen bonds.



Fig. 5. BOILED-Egg analysis of the compounds. The yolk (yellow region) indicates the high probability of brain penetration; white indicates a high probability of passive absorption
by the gastrointestinal tract. Molecules that are predicted to be effluated by P-glycoprotein from the central nervous system are indicated by blue whereas red molecules were
predicted otherwise.
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In this study, dianthramine was seen as a potent compound
candidate in regard to its interactions with the key ligands and/or
receptors analyzed in this study. Dianthramine interacts strongly
through the formation of hydrogen bonds with the amino acid
residues, which aremainly the key residues for binding sites related
to activation of thrombosis and platelet activation (CD40L and P-
selecting, respectively). SwissADME calculates bioavailability
scores and drug-likeness differently than TCMSP. The former was
used for Martin's calculation of bioavailability scores [30]. We used
OB � 30 and drug-likeness �0.18 values from TCMSP as criteria to
target chemical compounds in P. ginseng that were predicted to be
suitable candidates for our molecular docking analysis. We then
used SwissADME to investigate the pharmacokinetics (Fig. 5) and
physicochemical properties (Fig. 6) of the selected compounds that
were highly associated with platelet activation. When comparing
dianthramine to ginsenoside Rh2, dianthramine was found to have
a higher drug-likeness because it had no violations of the Lipinski
(Pfizer) filter, Muegge (Bayer) filter, Ghose filter, Veber filter, and
Egan filter [19]. Dianthramine has a bioavailability score of 0.56, but
ginsenoside Rh2 has a score of only 0.17. Deoxyharringtonine and
suchilactone had a bioavailability score of 0.55. Suchilactone was
predicted to pass through the blood-brain barrier (BBB) passively,
as shown in the yellow region (the yolk) in the BOILED-Egg diagram
(Fig. 5). This could be due to its lowmolecular weight (68.38 g/mol).
Dianthramine and deoxyharringtonine can be passively absorbed
by the GI tract but not accessing the brain (in the white), while
ginsenoside Rh2 was predicted to have rather low passive ab-
sorption into the GI tract (in the grey region). In a previous study,
ginsenoside Rh2 was also reported to have low oral bioavailability
[31]. Ginsenoside Rh2 and suchilactone were also predicted to be
effluated by the central nervous system through P-glycoprotein
(indicated as blue), while red molecules were predicted otherwise
(Fig. 5). The bioavailability radar generated from SwissADME for
ginsenoside Rh2, dianthramine, deoxyharringtonine and suchi-
lactone was shown in Fig. 6. The pink region on the radar indicates
287
the optimal range for each property which includes lipophilicity,
polarity, size, solubility, flexibility and saturation. Despite having
optimum properties, ginsenoside Rh2 lacked drug-likeness due to
its poor GI tract absorption (Fig. 6A). Deoxyharrtingtonine, dia-
nthramine, and suchilactone have good drug-likeness (Fig. 6B�D).
The favorable bioavailability of these compounds suggests that
P. ginseng may be a potentially therapeutic agent against COVID-19
related coagulopathy.

4. Discussion

Platelet counts have been suggested to be an important factor in
determining the severity of COVID-19. Lower platelet counts may
be related to the consumption of platelets in thrombi formation and
an improvement in platelet counts may indicate clinical improve-
ment [32]. Platelets are important players in hypercoagulability and
disseminated intravascular coagulation (DIC), which are both
important markers in patients with COVID-19 [33e35]. The coa-
gulopathy of COVID-19 comprises a combination of a few coagu-
lopathies, including DIC, thrombotic microangiopathy, a cytokine
storm, and the antiphospholipid syndrome; it does not meet the
criteria for any of these coagulopathies [36]. Thus, to effectively
treat hypercoagulability in COVID-19, platelets are a favorable
target as platelet hyperactivity has been observed in COVID-19
patients [37e39]. The levels of P-selecting and soluble CD40L
(sCD40L) were shown to be impacted by the severity of COVID-19,
with higher levels of P-selecting and sCD40L found in ICU patients
[16]. sCD40L is present in the bloodstream, where it forms multi-
meric complexes on cell surfaces with the membrane-anchored
full-length version of CD40L, which is involved in cell adhesion
[40].

SARS-CoV-2 may activate endothelial cells, inducing the secre-
tion of various inflammatory cytokines, which eventually causes
inflammation of platelets and leads to their activation [41]. Platelets
express a variety of receptors, including pattern recognition



Fig. 6. Bioavailability of active compounds of Panax ginseng. The bioavailability radar for ginsenoside Rh2 (A), dianthramine (B), deoxyharringtonine (C), and suchilactone (D) were
generated using SwissADME (http://www.swissadme.ch/). LIPO; lipophilicity, FLEX; flexibility, INSATU; saturation, INSOLU, solubility.
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receptors and cytokine and chemokine receptors [42]. The
protease-activated receptor-1 and the GPIb-IX-V complex on
platelets can be activated by the coagulation cascade, which causes
platelets to be activated and aggregate due to integrin aIIbb3 [43].
When platelets are activated, CD40L translocates to the platelet
surface, is cleaved, and then is shed from the platelet surface
releasing sCD40L. This is known to cause inflammation, stabilize
the platelet-rich thrombi, and inhibit the reendothelialization of an
injured vessel in the case of thrombosis [44]. Additionally, CD40,
which binds to CD40L and is an integral protein of the tumor ne-
crosis factor receptor family (TNF-R), plays an important role in
many inflammatory processes, including Crohn's disease and lupus
erythematosus, and also participates in an important interaction
that contributes to the progression of atherosclerosis [45]. The
sCD40L secreted from activated platelets can also bind to CD40,
which is found on endothelial cell surfaces. This triggers a series of
inflammatory cascades and ultimately leads to atherothrombosis
[46]. Patients with COVID-19 have been reported to have an
elevated amount of detectable soluble CD40L (sCD40L) [47]. In a
separate study, an increase in sCD40L in the plasma of patients with
COVID-19 was also observed [48]. This indicated that CD40L is an
important marker in COVID-19.

The GPIb-IX-V complex is found on megakaryocytes and plate-
lets, the second most abundant receptor on platelets, and is a
platelet receptor for the vWF, thrombin, P-selecting, coagulation
factors XI and XIII, and the integrin aMb2. This complex also con-
tains the GPIba, GPIbb, GPIX, and the GPV subunits GPIba, and is
also known as CD42b, which contains the binding region for the A1
domain of the vWF [49]. The vWF is a protein that participates in
the formation of blood clots. When vascular injury occurs, the
platelet GPIba interacts with strand b3 of domain A1 of the vWF,
which facilitates the initial stage of platelet adhesion to the vascular
subendothelium. This also activates signaling events within the
platelet that lead to increased platelet activation, thrombosis, and
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hemostasis [50]. In a previous study, SARS-CoV-2 was found to
cause activation of platelets due to spike proteins via CD42b [18]. In
patients that did not survive COVID-19 pneumonia, there was an
increase in sinusoidal platelet aggregates in the hepatic microvas-
culature, indicated by CD42b positive staining in the liver [51].
Therefore, preventing the binding of CD42b to various coagulation
factors and agonists for platelet activation may cease and prevent
aggregate formation.

P-selecting (CD62P) is the largest member of the selecting
family and is expressed by both platelets and endothelial cells.
Soluble P-selecting is found in the plasma, which may be due to
damaged platelet membranes or simple shedding [52]. Grobler et al
(2020) summarized that fibrinogen, P-selecting, vWF, and D-di-
mers are crucial in the coagulopathies of COVID-19 patients, and
they are associated with an increased risk of acute respiratory
distress syndrome. Increased P-selecting is also observed with
increasing severity of COVID-19, followed by the occurrence of a
cytokine storm, increased D-dimer levels, and reduced levels of
vWF and fibrinogen [53]. Therefore, we investigated the binding
affinity of the active compounds of ginseng to GPIba, P-selecting,
and CD40L as these receptors have been reported in COVID-19
related coagulopathies, targeting platelet activation.

Natural products, such as Korean Red Ginseng, which is the
steamed and dried product of P. ginseng, have been reported to have
anti-platelet effects [12,54,55]. In this study, we sought to investi-
gate whether the anti-platelet effect of P. ginseng could target
COVID-19 related coagulopathies and targeting receptors that have
been reported to be associated with the pathology of COVID-19. We
found that various bioactive compounds of P. ginseng have high
affinity to the receptors that were reportedly involved in the coa-
gulopathy of COVID-19, especially dianthramine, deoxy-
harrtingtonine, and suchilactone. These minor secondary
metabolites in P. ginseng have received little attention in the past.
However, a target network analysis of ginseng bioactive

http://www.swissadme.ch/
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phytochemicals has been carried out on a TCM, namely the
ShenZhu capsule. P. ginseng's dried roots were one of the main
components of the capsule. The study revealed that dianthramine
was one of the bioactive compounds that has the most interactions
with targets, primarily those connected related to immune and
inflammatory pathways [56]. These minor secondary metabolites
may play a synergistic or catalytic role in the antiplatelet effects of
P. ginseng via multiple pathways. Validating the roles of these
compounds requires additional research. From the BOILED-Egg
diagram, suchilactone can pass through the BBB, while dia-
nthramine can be passively absorbed into the GI tract. However,
there have been no reported data on the toxicity of suchilactone.
Thus, this has to be further validated in future studies.

The current investigation suggested that dianthramine is a po-
tential therapeutic agent against COVID-19 induced coagulopathy
by targeting the activation of platelets as it can interact with CD40L
and P-selecting at their functional binding sites. Docking complexes
of this natural metabolite with CD40L and P-selecting demon-
strated a stable conformation, which was corroborated by the
binding free energy. There are difficulties in actual in vitro or ex vivo
validation of P. ginseng against COVID-19, however, this study shed
light on the potential use of P. ginseng as a supplementary treat-
ment for patients with COVID-19 with evidence of the potential
binding sites via molecular docking. Nevertheless, the efficacy of
dianthramine should be further validated in inhibition of platelet
aggregation and against COVID-19 induced thromboembolism. In
addition to iGEMDOCK analysis, future research on molecular
docking analysis using a different docking software is warranted to
verify inter-software outputs.
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