과제정보
This work was financially supported by the National Natural Science Foundation of China (No. 82204437), Shanghai Municipality Science and Technology Commission (No.22YF1445100), and Key-Area Research and DevelopmentProgram of Guangdong Province (No. 2020B1111110003).
참고문헌
- Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients 2020;12(10).
- Zhang C, Lu LF, Li ZC, Zhou XY, Zhou Y, Chen DD, Li S, Zhang YA. Grass carp reovirus VP56 represses interferon production by degrading phosphorylated IRF7. Fish Shellfish Immunol 2020;99:99-106. https://doi.org/10.1016/j.fsi.2020.02.004
- Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Mol Sci 2020;21(14).
- Lampejo T. Influenza and antiviral resistance: an overview. Eur J Clin Microbiol Infect Dis 2020;39(7):1201-8. https://doi.org/10.1007/s10096-020-03840-9
- Park SE, Na CS, Yoo SA, Seo SH, Son HS. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J Ginseng Res 2017;41(1):36-42. https://doi.org/10.1016/j.jgr.2015.12.008
- Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2018;42(2):123-32. https://doi.org/10.1016/j.jgr.2017.01.008
- Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018;9:423.
- Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020;161:105263.
- Szczuka D, Nowak A, Zaklos-Szyda M, Kochan E, Szymanska G, Motyl I, Blasiak J. American ginseng (Panax quinquefolium L.) as a source of bioactive phytochemicals with pro-health properties. Nutrients 2019;11(5).
- Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020;25(19).
- Nguyen NH, Nguyen CT. Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019;27(5):871-83. https://doi.org/10.1007/s10787-019-00630-4
- Zhang T, Zhong S, Hou L, Wang Y, Xing X, Guan T, Zhang J, Li T. Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol. J Ginseng Res 2020;44(5):690-6. https://doi.org/10.1016/j.jgr.2018.05.001
- Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39(4):287-98. https://doi.org/10.1016/j.jgr.2014.12.005
- Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 1991;13(3):121-30. https://doi.org/10.1080/01652176.1991.9694296
- Du T, Nan Y, Xiao S, Zhao Q, Zhou EM. Antiviral strategies against PRRSV infection. Trends Microbiol 2017;25(12):968-79. https://doi.org/10.1016/j.tim.2017.06.001
- Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: origin of phenotype and genotype diversity. Virology 2015;479-480:475-86. https://doi.org/10.1016/j.virol.2015.02.012
- Lunney JK, Fang Y, Ladinig A, Chen N, Li Y, Rowland B, Renukaradhya GJ. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 2016;4:129-54. https://doi.org/10.1146/annurev-animal-022114-111025
- Yu ZQ, Yi HY, Ma J, Wei YF, Cai MK, Li Q, Qin CX, Chen YJ, Han XL, Zhong RT, et al. Ginsenoside Rg1 suppresses type 2 PRRSV infection via NF-kappaB signaling pathway in vitro, and provides partial protection against HP-PRRSV in piglet. Viruses 2019;11(11).
- Hu Y, Zhang B, Wang W, Zhou J, Li B, He K. Therapeutic effects of saponin components on porcine reproductive and respiratory syndrome virusinfected piglets. J Anim Physiol Anim Nutr (Berl). 2020;104(2):637-44. https://doi.org/10.1111/jpn.13302
- Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992;56(1):152-79. https://doi.org/10.1128/mr.56.1.152-179.1992
- Takashita E, Ichikawa M, Morita H, Ogawa R, Fujisaki S, Shirakura M, Miura H, Nakamura K, Kishida N, Kuwahara T, et al. Human-to-Human transmission of influenza A(H3N2) virus with reduced susceptibility to baloxavir, Japan, february 2019. Emerg Infect Dis 2019;25(11):2108-11. https://doi.org/10.3201/eid2511.190757
- Joseph U, Su YC, Vijaykrishna D, Smith GJ. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respir Viruses 2017;11(1):74-84. https://doi.org/10.1111/irv.12412
- Dong W, Farooqui A, Leon AJ, Kelvin DJ. Inhibition of influenza A virus infection by ginsenosides. PLoS One 2017;12(2):e0171936.
- Choi JG, Jin YH, Lee H, Oh TW, Yim NH, Cho WK, Ma JY. Protective effect of Panax notoginseng root water extract against influenza A virus infection by enhancing antiviral interferon-mediated immune responses and natural killer cell activity. Front Immunol 2017;8:1542.
- Kwon EB, Oh YC, Hwang YH, Li W, Park SM, Kong R, Kim YS, Choi JG. A herbal mixture formula of OCD20015-V009 prophylactic administration to enhance interferon-mediated antiviral activity against influenza A virus. Front Pharmacol 2021;12:764297.
- Wang Y, Jung YJ, Kim KH, Kwon Y, Kim YJ, Zhang Z, Kang HS, Wang BZ, Quan FS, Kang SM. Antiviral activity of fermented ginseng extracts against a broad range of influenza viruses. Viruses 2018;10(9).
- Park EH, Yum J, Ku KB, Kim HM, Kang YM, Kim JC, Kim JA, Kang YK, Seo SH. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J Ginseng Res 2014;38(1):40-6. https://doi.org/10.1016/j.jgr.2013.11.012
- Kim EH, Kim SW, Park SJ, Kim S, Yu KM, Kim SG, Lee SH, Seo YK, Cho NH, Kang K, et al. Greater efficacy of black ginseng (cj EnerG) over red ginseng against lethal influenza A virus infection. Nutrients 2019;11(8).
- Kim H, Jang M, Kim Y, Choi J, Jeon J, Kim J, Hwang YI, Kang JS, Lee WJ. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. J Pharm Pharmacol 2016;68(3):406-20. https://doi.org/10.1111/jphp.12529
- Sreekanth TVM, Nagajyothi PC, Muthuraman P, Enkhtaivan G, Vattikuti SVP, Tettey CO, Kim DH, Shim J, Yoo K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B 2018;188:6-11. https://doi.org/10.1016/j.jphotobiol.2018.08.013
- McElhaney JE, Gravenstein S, Cole SK, Davidson E, O'Neill D, Petitjean S, Rumble B, Shan JJ. A placebo-controlled trial of a proprietary extract of North American ginseng (CVT-E002) to prevent acute respiratory illness in institutionalized older adults. J Am Geriatr Soc 2004;52(1):13-9. https://doi.org/10.1111/j.1532-5415.2004.52004.x
- Sung H, Jung YS, Kang MW, Bae IG, Chang HH, Woo JH, Cho YK. High frequency of drug resistance mutations in human immunodeficiency virus type 1-infected Korean patients treated with HAART. AIDS Res Hum Retroviruses 2007;23(10):1223-9. https://doi.org/10.1089/aid.2007.0008
- Lu DY, Wu HY, Yarla NS, Xu B, Ding J, Lu TR. HAART in HIV/AIDS treatments: future trends. Infect Disord Drug Targets 2018;18(1):15-22. https://doi.org/10.2174/1871526517666170505122800
- Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017;41(2):222-6. https://doi.org/10.1016/j.jgr.2016.12.006
- Sung H, Kang SM, Lee MS, Kim TG, Cho YK. Korean red ginseng slows depletion of CD4 T cells in human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol 2005;12(4):497-501. https://doi.org/10.1128/CDLI.12.4.497-501.2005
- Sung H, Jung YS, Cho YK. Beneficial effects of a combination of Korean red ginseng and highly active antiretroviral therapy in human immunodeficiency virus type 1-infected patients. Clin Vaccine Immunol 2009;16(8):1127-31. https://doi.org/10.1128/CVI.00013-09
- Cho YK, Kim JE. The frequency of defective genes in vif and vpr genes in 20 hemophiliacs is associated with Korean Red Ginseng and highly active antiretroviral therapy: the impact of lethal mutations in vif and vpr genes on HIV-1 evolution. J Ginseng Res 2021;45(1):149-55. https://doi.org/10.1016/j.jgr.2020.03.003
- Cho YK, Kim JE, Woo JH. Korean Red Ginseng increases defective pol gene in peripheral blood mononuclear cells of HIV-1-infected patients; inhibition of its detection during ginseng-based combination therapy. J Ginseng Res 2019;43(4):684-91. https://doi.org/10.1016/j.jgr.2019.05.011
- Baggen J, Thibaut HJ, Strating J, van Kuppeveld FJM. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol 2018;16(6):368-81. https://doi.org/10.1038/s41579-018-0005-4
- Khanna M, Gautam A, Rajput R, Sharma L. Natural products as a paradigm for the treatment of coxsackievirus - induced myocarditis. Curr Top Med Chem 2020;20(8):607-16. https://doi.org/10.2174/1568026620666200129094516
- Pan L, Zhang Y, Lu J, Geng Z, Jia L, Rong X, Wang Z, Zhao Q, Wu R, Chu M, et al. Panax notoginseng saponins ameliorates coxsackievirus B3-induced myocarditis by activating the cystathionine-gamma-lyase/hydrogen sulfide pathway. J Cardiovasc Transl Res 2015;8(9):536-44. https://doi.org/10.1007/s12265-015-9659-8
- Wang X, Wang Y, Ren Z, Qian C, Li Y, Wang Q, Zhang Y, Zheng L, Jiang J, Yang C, et al. Protective effects of 20(s)-protopanaxtriol on viral myocarditis infected by coxsackievirus B3. Pathobiology 2012;79(6):285-9. https://doi.org/10.1159/000331229
- Ventarola D, Bordone L, Silverberg N. Update on hand-foot-and-mouth disease. Clin Dermatol 2015;33(3):340-6. https://doi.org/10.1016/j.clindermatol.2014.12.011
- You L, Chen J, Liu W, Xiang Q, Luo Z, Wang W, Xu W, Wu K, Zhang Q, Liu Y, et al. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence 2020;11(1):537-53. https://doi.org/10.1080/21505594.2020.1766790
- Kang N, Gao H, He L, Liu Y, Fan H, Xu Q, Yang S. Ginsenoside Rb1 is an immune-stimulatory agent with antiviral activity against enterovirus 71. J Ethnopharmacol 2021;266:113401.
- Song JH, Choi HJ, Song HH, Hong EH, Lee BR, Oh SR, Choi K, Yeo SG, Lee YP, Cho S, et al. Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3. J Ginseng Res 2014;38(3):173-9. https://doi.org/10.1016/j.jgr.2014.04.003
- Bergroth E, Aakula M, Elenius V, Remes S, Piippo-Savolainen E, Korppi M, Piedra PA, Bochkov YA, Gern JE, Camargo Jr CA, et al. Rhinovirus type in severe bronchiolitis and the development of asthma. J Allergy Clin Immunol Pract 2020;8(2):588-595 e4.
- Makris S, Johnston S. Recent advances in understanding rhinovirus immunity. F1000Res 2018;7.
- Fukushima A, Yoo YC, Yoshimatsu K, Matsuzawa K, Tamura M, Tono-oka S, Taniguchi K, Urasawa S, Arikawa J, Azuma I. Effect of MDP-Lys(L18) as a mucosal immunoadjuvant on protection of mucosal infections by Sendai virus and rotavirus. Vaccine 1996;14(6):485-91. https://doi.org/10.1016/0264-410X(95)00236-T
- Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J Ginseng Res 2013;37(1):80-6. https://doi.org/10.5142/jgr.2013.37.80
- Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: genetics, pathogenesis and vaccine advances. Rev Med Virol 2018;28(6):e2003.
- Mortality GBD. Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1459-544. 10053. https://doi.org/10.1016/S0140-6736(16)31012-1
- Yang H, Oh KH, Kim HJ, Cho YH, Yoo YC. Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean red ginseng prevent rotavirus infection in newborn mice. J Microbiol Biotechnol 2018;28(3):391-6. https://doi.org/10.4014/jmb.1801.01006
- Connolly SA, Jardetzky TS, Longnecker R. The structural basis of herpesvirus entry. Nat Rev Microbiol 2021;19(2):110-21. https://doi.org/10.1038/s41579-020-00448-w
- Dadwal SS. Herpes virus infections other than cytomegalovirus in the recipients of hematopoietic stem cell transplantation. Infect Dis Clin North Am 2019;33(2):467-84. https://doi.org/10.1016/j.idc.2019.02.012
- Simas JP, Efstathiou S. Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 1998;6(7):276-82. https://doi.org/10.1016/S0966-842X(98)01306-7
- Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2015;12(1):1-15. https://doi.org/10.3109/1547691X.2014.882996
- Manners O, Murphy JC, Coleman A, Hughes DJ, Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol 2018;32:60-70. https://doi.org/10.1016/j.coviro.2018.08.014
- Kang S, Im K, Kim G, Min H. Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus. J Ginseng Res 2017;41(4):496-502. https://doi.org/10.1016/j.jgr.2016.08.010
- Wright S, Altman E. Inhibition of herpes simplex viruses, types 1 and 2, by ginsenoside 20(S)-Rg3. J Microbiol Biotechnol 2020;30(1):101-8. https://doi.org/10.4014/jmb.1908.08047
- Kang S, Song MJ, Min H. Antiviral activity of ginsenoside Rg3 isomers against gammaherpesvirus through inhibition of p38- and JNK-associated pathways. Journal of Functional Foods 2018;40:219-28. https://doi.org/10.1016/j.jff.2017.11.011
- Petti S, Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis 2019;25(8):1850-65. https://doi.org/10.1111/odi.13234
- Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019;37(50):7363-71. https://doi.org/10.1016/j.vaccine.2017.09.044
- Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019;29(4):e2054.
- Daikoku T, Tannai H, Honda M, Onoe T, Matsuo K, Onoye Y, Nishizawa M, Kawana T, Okuda T, Hasegawa T, et al. Subclinical generation of acyclovirresistant herpes simplex virus with mutation of homopolymeric guanosine strings during acyclovir therapy. J Dermatol Sci 2016;82(3):160-5. https://doi.org/10.1016/j.jdermsci.2016.02.006
- Anton-Vazquez V, Mehra V, Mbisa JL, Bradshaw D, Basu TN, Daly ML, Mufti GJ, Pagliuca A, Potter V, Zuckerman M. Challenges of aciclovir-resistant HSV infection in allogeneic bone marrow transplant recipients. J Clin Virol 2020;128:104421.
- Cho A, Roh YS, Uyangaa E, Park S, Kim JW, Lim KH, Kwon J, Eo SK, Lim CW, Kim B. Protective effects of red ginseng extract against vaginal herpes simplex virus infection. J Ginseng Res 2013;37(2):210-8. https://doi.org/10.5142/jgr.2013.37.210
- Heim K, Neumann-Haefelin C, Thimme R, Hofmann M. Heterogeneity of HBV-specific CD8(+) T-cell failure: implications for immunotherapy. Front Immunol 2019;10:2240.
- Gane EJ. Future anti-HBV strategies. Liver Int 2017;37(Suppl 1):40-4. https://doi.org/10.1111/liv.13304
- Choi SH, Yang KJ, Lee DS. Effects of complementary combination therapy of Korean red ginseng and antiviral agents in chronic hepatitis B. J Altern Complement Med 2016;22(12):964-9. https://doi.org/10.1089/acm.2015.0206
- Kang LJ, Choi YJ, Lee SG. Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginsenoside Rg3 attenuates hepatitis B virus replication. Int J Biochem Cell Biol 2013;45(11):2612-21. https://doi.org/10.1016/j.biocel.2013.08.016
- Westerhoff M, Ahn J. Chronic hepatitis C and direct acting antivirals. Surg Pathol Clin 2018;11(2):287-96. https://doi.org/10.1016/j.path.2018.02.002
- Baumert TF, Berg T, Lim JK, Nelson DR. Status of direct-acting antiviral therapy for hepatitis C virus infection and remaining challenges. Gastroenterology 2019;156(2):431-45. https://doi.org/10.1053/j.gastro.2018.10.024
- Kim SJ, Syed GH, Khan M, Chiu WW, Sohail MA, Gish RG, Siddiqui A. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci U S A 2014;111(17):6413-8. https://doi.org/10.1073/pnas.1321114111
- Jassey A, Liu CH, Changou CA, Richardson CD, Hsu HY, Lin LT. Hepatitis C virus non-structural protein 5A (NS5A) disrupts mitochondrial dynamics and induces mitophagy. Cells 2019;8(4).
- Kim SJ, Jang JY, Kim EJ, Cho EK, Ahn DG, Kim C, Park HS, Jeong SW, Lee SH, Kim SG, et al. Ginsenoside Rg3 restores hepatitis C virus-induced aberrant mitochondrial dynamics and inhibits virus propagation. Hepatology 2017;66(3):758-71. https://doi.org/10.1002/hep.29177
- Reshi L, Wu JL, Wang HV, Hong JR. Aquatic viruses induce host cell death pathways and its application. Virus Res 2016;211:133-44. https://doi.org/10.1016/j.virusres.2015.10.018
- Dai J, Zhang L, Zhang P, Shu H, Mao A, Li Y. Ginsenoside Rg3 inhibits grass carp reovirus replication in grass carp ovarian epithelial cells. Microb Pathog 2020;144:104174.
- Cox RM, Plemper RK. Structure and organization of paramyxovirus particles. Curr Opin Virol 2017;24:105-14. https://doi.org/10.1016/j.coviro.2017.05.004
- Gowthaman V, Singh SD, Dhama K, Desingu PA, Kumar A, Malik YS, Munir M. Isolation and characterization of genotype XIII Newcastle disease virus from Emu in India. Virusdisease 2016;27(3):315-8. https://doi.org/10.1007/s13337-016-0324-x
- Ma X, Bi S, Wang Y, Chi X, Hu S. Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poult Sci 2019;98(9):3548-56. https://doi.org/10.3382/ps/pez207
- Zhai L, Li Y, Wang W, Wang Y, Hu S. Effect of oral administration of ginseng stem-and-leaf saponins (GSLS) on the immune responses to Newcastle disease vaccine in chickens. Vaccine 2011;29(31):5007-14. https://doi.org/10.1016/j.vaccine.2011.04.097
- Blome S, Staubach C, Henke J, Carlson J, Beer M. Classical swine fever-an updated review. Viruses 2017;9(4).
- Chernick A, Ambagala A, Orsel K, Wasmuth JD, van Marle G, van der Meer F. Bovine viral diarrhea virus genomic variation within persistently infected cattle. Infect Genet Evol 2018;58:218-23. https://doi.org/10.1016/j.meegid.2018.01.002
- Pecora A, Perez Aguirreburualde MS, Ridpath JF, Dus Santos MJ. Molecular characterization of pestiviruses in fetal bovine sera originating from Argentina: evidence of circulation of HoBi-like viruses. Front Vet Sci 2019;6:359.
- Tong W, Zheng H, Li GX, Gao F, Shan TL, Zhou YJ, Yu H, Jiang YF, Yu LX, Li LW, et al. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res 2020;173:104652.
- Tan B, Giangaspero M, Sun N, Jin Y, Liu K, Wang Q, Cheng S, Wang Y, Zhang S. Antiviral effect of ginsenoside Rb2 and Rb3 against bovine viral diarrhea virus and classical swine fever virus in vitro. Front Vet Sci 2021;8:764909.
- Nam HH, Ison MG. Respiratory syncytial virus infection in adults. BMJ 2019;366:l5021. https://doi.org/10.1136/bmj.l5779
- Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 2017;390:946-58. 10098. https://doi.org/10.1016/S0140-6736(17)30938-8
- Lee JS, Ko EJ, Hwang HS, Lee YN, Kwon YM, Kim MC, Kang SM. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int J Mol Med 2014;34(1):183-90. https://doi.org/10.3892/ijmm.2014.1750
- Lee JS, Lee YN, Lee YT, Hwang HS, Kim KH, Ko EJ, Kim MC, Kang SM. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015;7(2):1021-36. https://doi.org/10.3390/nu7021021
- Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, et al. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014;34(11):902-14. https://doi.org/10.1089/jir.2013.0093
- Vohra S, Johnston BC, Laycock KL, Midodzi WK, Dhunnoo I, Harris E, Baydala L. Safety and tolerability of North American ginseng extract in the treatment of pediatric upper respiratory tract infection: a phase II randomized, controlled trial of 2 dosing schedules. Pediatrics 2008;122(2):e402-10. https://doi.org/10.1542/peds.2007-2186
- Xie X, Hu L, Xue H, Xiong Y, Panayi AC, Lin Z, Chen L, Yan C, Zhou W, Mi B, et al. Prognosis and treatment of complications associated with COVID-19: a systematic review and meta-analysis. Acta Materia Medica.1(1):124-137.
- Yang J, Yang Y. Regulatory lessons from China's COVID-19 vaccines development and approval policies. Acta Materia Medica.1(1):96-105.
- Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. Phytomedicine 2021;85:153476.
- Park HH, Kim H, Lee HS, Seo EU, Kim JE, Lee JH, Mun YH, Yoo SY, An J, Yun MY, et al. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials 2021;273:120827.
- Sharma P, Tyagi A, Bhansali P, Pareek S, Singh V, Ilyas A, Mishra R, Poddar NK. Saponins: extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem Toxicol 2021;150:112075.
- Wang C, Liu J, Deng J, Wang J, Weng W, Chu H, Meng Q. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J Ginseng Res 2020;44(1):14-23. https://doi.org/10.1016/j.jgr.2019.01.005