DOI QR코드

DOI QR Code

The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo.

  • Qi-rui, Hu (State Key Laboratory of Food Science and Technology, Nanchang University) ;
  • Yao, Pan (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health) ;
  • Han-cheng, Wu (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health) ;
  • Zhen-zhen, Dai (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health) ;
  • Qing-xin, Huang (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health) ;
  • Ting, Luo (State Key Laboratory of Food Science and Technology, Nanchang University) ;
  • Jing, Li (State Key Laboratory of Food Science and Technology, Nanchang University) ;
  • Ze-yuan, Deng (State Key Laboratory of Food Science and Technology, Nanchang University) ;
  • Fang, Chen (Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health)
  • Received : 2022.03.21
  • Accepted : 2022.09.27
  • Published : 2023.03.02

Abstract

Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.

Keywords

Acknowledgement

We would like to thank the following funding sources: The National Natural Science Foundation of China (NO. 81860578), and the Academic and Technical Leaders Training Program of Major Disciplines in Jiangxi Province-Young Talents Programme (NO. 20204BCJ23025).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-49. https://doi.org/10.3322/caac.21660
  2. Munzone E, Bagnardi V, Campenni G, Mazzocco K, Pagan E, Tramacere A, Masiero M, Iorfida M, Mazza M, Montagna E, et al. Preventing chemotherapyinduced alopecia: a prospective clinical trial on the efficacy and safety of a scalp-cooling system in early breast cancer patients treated with anthracyclines. Br J Cancer 2019;121(4):325-31. https://doi.org/10.1038/s41416-019-0520-8
  3. Razzak M, Marshall L. Radiotherapy toxicity. Nat Rev Dis Primers 2019;5(1): 14.
  4. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 2006;6(9):702-13. https://doi.org/10.1038/nrc1950
  5. Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33(6 Pt 1):717-35. https://doi.org/10.1016/j.biotechadv.2015.03.001
  6. Zhou P, Xie W, He S, Sun Y, Meng X, Sun G, Sun X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019;8(3).
  7. Zheng Q, Bao XY, Zhu PC, Tong Q, Zheng GQ, Wang Y. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017;2017:6313625.
  8. Chen J, Zhang X, Liu X, Zhang C, Shang W, Xue J, Chen R, Xing Y, Song D, Xu R. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol 2019;856:172418.
  9. Hou T, Liu Y, Wang X, Jiao D, Xu H, Shi Q, Wang Y, Li W, Wu T, Liang Q. Ginsenoside Rg1 promotes lymphatic drainage and improves chronic inflammatory arthritis. J Musculoskelet Neuronal Interact 2020;20(4):526-34.
  10. Ratan ZA, Haidere MF, Hong YH, Park SH, Lee J-O, Lee J, Cho JY. Pharmacological potential of ginseng and its major component ginsenosides. J of Ginseng Res 2020;45(2):199-210. https://doi.org/10.1016/j.jgr.2020.02.004
  11. Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, Kong R, Chen Z, Duan Y, Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 2016;7(43):70535-45. https://doi.org/10.18632/oncotarget.12059
  12. Xiing JH, Chen YQ, Ji MX, Zhu SG, Gong XQ. Clinical study on effect of ginsenoside in inducing rectal cancer cell apoptosis. Chinese Journal of Integrated Traditional and Western Medicine 2001;21(4):260-1 [in Chinese]. https://doi.org/10.3321/j.issn:1003-5370.2001.04.008
  13. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol- and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738694.
  14. Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (review). Int J Mol Med 2017;39(3):507-18. https://doi.org/10.3892/ijmm.2017.2857
  15. Kim D, Park M, Haleem I, Lee Y, Koo J, Na YC, Song G, Lee J. Natural product ginsenoside 20(S)-25-Methoxyl-Dammarane-3beta, 12beta, 20-triol in cancer treatment: a review of the pharmacological mechanisms and pharmacokinetics. Front Pharmacol 2020;11:521.
  16. Dong H, Bai LP, Wong VK, Zhou H, Wang JR, Liu Y, Jiang ZH, Liu L. The in vitro structure-related anti-cancer activity of ginsenosides and their derivatives. Molecules 2011;16(12):10619-30. https://doi.org/10.3390/molecules161210619
  17. Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, et al. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020;203:112627.
  18. Cheong JH, Kim H, Hong MJ, Hong MJ, Yang MH, Yang MH, Kim JW, Kim JW, Yoo H, Yoo H, et al. Stereoisomer-specific anticancer activities of ginsenoside Rg3 and Rh2 in HepG2 cells: disparity in cytotoxicity and autophagyinducing effects due to 20(S)-epimers. Biol Pharm Bull 2015;38(1):102-8. https://doi.org/10.1248/bpb.b14-00603
  19. Liu J, Shimizu K, Yu H, Yu H, Zhang C, Zhang C, Jin F, Jin F, Kondo R, Kondo R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia 2010;81(7):902-5. https://doi.org/10.1016/j.fitote.2010.05.020
  20. Dong H, Bai LP, Wong VKW, Wong VK, Zhou H, Zhou H, Wang JR, Wang JR, Liu Y, Liu Y, et al. The in vitro structure-related anti-cancer activity of ginsenosides and their derivatives. Molecules 2011;16(12):10619-30. https://doi.org/10.3390/molecules161210619
  21. Gu Y, Wang GJ, Wu XL, Wu XL, Zheng YT, Zheng YT, Zhang JW, Zhang JW, Ai H, Ai H, et al. Intestinal absorption mechanisms of ginsenoside Rh2: stereoselectivity and involvement of ABC transporters. Xenobiotica 2010;40(9):602-12. https://doi.org/10.3109/00498254.2010.500744
  22. Zhang J, Zhou F, Niu F, Lu M, Wu X, Sun J, Wang G. Stereoselective regulations of P-glycoprotein by ginsenoside Rh2 epimers and the potential mechanisms from the view of pharmacokinetics. PLoS One 2012;7(4):e35768.
  23. Wang C, He H, Dou G, Li J, Zhang X, Jiang M, Li P, Huang X, Chen H, Li L, et al. Ginsenoside 20(S)-Rh2 induces apoptosis and differentiation of acute myeloid leukemia cells: role of orphan nuclear receptor Nur77. J Agric Food Chem 2017;65(35):7687-97. https://doi.org/10.1021/acs.jafc.7b02299
  24. Xia T, Wang YN, Zhou CX, Wu LM, Liu Y, Zeng QH, Zhang XL, Yao JH, Wang M, Fang JP. Ginsenoside Rh2 and Rg3 inhibit cell proliferation and induce apoptosis by increasing mitochondrial reactive oxygen species in human leukemia Jurkat cells. Mol Med Rep 2017;15(6):3591-8. https://doi.org/10.3892/mmr.2017.6459
  25. Ge G, Yan Y, Cai H. Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biological & Pharmaceutical Bulletin 2017;40(12):2117-24. https://doi.org/10.1248/bpb.b17-00463
  26. Liu X, Sun Y, Yue L, Li S, Qi X, Zhao H, Yang Y, Zhang C, Yu H. JNK pathway and relative transcriptional factor were involved in ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Genet Mol Res 2016;15(3).
  27. Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol 2005;55(6):531-40. https://doi.org/10.1007/s00280-004-0919-6
  28. Park JA, Lee KY, Oh YJ, Kim KW, Lee SK. Activation of caspase-3 protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Letters 1998;121(1):73-81. https://doi.org/10.1016/S0304-3835(97)00333-9
  29. Oh JI, Chun KH, Joo SH, Oh YT, Lee SK. Caspase-3-dependent protein kinase C delta activity is required for the progression of Ginsenoside-Rh2-induced apoptosis in SK-HEP-1 cells. Cancer Lett 2005;230(2):228-38. https://doi.org/10.1016/j.canlet.2004.12.043
  30. Kim JH, Choi JS. Effect of ginsenoside Rh-2 via activation of caspase-3 and Bcl-2-insensitive pathway in ovarian cancer cells. Physiol Res 2016;65(6): 1031-7. https://doi.org/10.33549/physiolres.933367
  31. Park EK, Lee EJ, Lee SH, Koo KH, Sung JY, Hwang EH, Park JH, Kim CW, Jeong KC, Park BK, et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt. Br J Pharmacol 2010;160(5):1212-23. https://doi.org/10.1111/j.1476-5381.2010.00768.x
  32. Choi S, Oh JY, Kim SJ. Ginsenoside Rh2 induces Bcl-2 family proteinsmediated apoptosis in vitro and in xenografts in vivo models. J Cell Biochem 2011;112(1):330-40. https://doi.org/10.1002/jcb.22932
  33. Zhu S, Liu X, Xue M, Li Y, Cai D, Wang S, Zhang L. 20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-alpha/caspase8 signaling cascades. J Ginseng Res 2021;45(2):295-304. https://doi.org/10.1016/j.jgr.2020.05.001
  34. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5(11):897-907. https://doi.org/10.1038/nrm1496
  35. Chen F, Sun Y, Zheng SL, Qin Y, Julian McClements D, Hu JN, Deng ZY. Antitumor and immunomodulatory effects of ginsenoside Rh2 and its octyl ester derivative in H22 tumor-bearing mice. Journal of Functional Foods 2017;32:382-90. https://doi.org/10.1016/j.jff.2017.03.013
  36. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301(2):185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  37. Wang YS, Lin Y, Li H, Li Y, Song Z, Jin YH. The identification of molecular target of (20S) ginsenoside Rh2 for its anti-cancer activity. Sci Rep 2017;7(1): 12408.
  38. Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, Lee S-K, Jin YH. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein & Cell 2014;5(3):224-34. https://doi.org/10.1007/s13238-014-0027-2
  39. Yi JS, Choo HJ, Cho BR, Kim HM, Kim YN, Ham YM, Ko YG. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun 2009;385(2):154-9. https://doi.org/10.1016/j.bbrc.2009.05.028
  40. Ow YP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 2008;9(7):532-42. https://doi.org/10.1038/nrm2434
  41. Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 2012;11(12):937-57. https://doi.org/10.1038/nrd3871
  42. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9(1):47-59. https://doi.org/10.1038/nrm2308
  43. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020;21(2):85-100. https://doi.org/10.1038/s41580-019-0173-8
  44. Chen F, Zhang B, Sun Y, Xiong ZX, Peng H, Deng ZY, Hu JN. The octyl ester of ginsenoside Rh2 induces lysosomal membrane permeabilization via bax translocation. Nutrients 2016;8(5):244.
  45. Xia T, Zhang J, Zhou C, Li Y, Duan W, Zhang B, Wang M, Fang J. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J Ginseng Res 2020;44(5): 725-37. https://doi.org/10.1016/j.jgr.2019.07.003
  46. Liu Y, Wang J, Qiao J, Liu S, Wang S, Zhao D, Bai X, Liu M. Ginsenoside Rh2 inhibits HeLa cell energy metabolism and induces apoptosis by upregulating voltage-dependent anion channel 1. Int J Mol Med 2020;46(5):1695-706. https://doi.org/10.3892/ijmm.2020.4725
  47. Chen F, Deng Z, Xiong Z, Zhang B, Yang J, Hu J. A ROS-mediated lysosomal-mitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food Funct 2015;6(12):3828-37. https://doi.org/10.1039/C5FO00518C
  48. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 2020;52(2):192-203. https://doi.org/10.1038/s12276-020-0384-2
  49. Xia T, Zhang B, Li Y, Fang B, Zhu X, Xu B, Zhang J, Wang M, Fang J. New insight into 20(S)-ginsenoside Rh2 against T-cell acute lymphoblastic leukemia associated with the gut microbiota and the immune system. Eur J Med Chem 2020;203:112582.
  50. Zhu Y, Xu J, Li Z, Xie S, Zhou J, Guo X, Zhou X, Li G, Zhong R, Ma A. Ginsenoside Rh2 suppresses growth of uterine leiomyoma in vitro and in vivo and may regulate ERa/c-Src/p38 MAPK activity. J Funct Foods 2015;18:73-82 https://doi.org/10.1016/j.jff.2015.06.057
  51. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017;17(2):93-115. https://doi.org/10.1038/nrc.2016.138
  52. Liu ZH, Li J, Xia J, Jiang R, Zuo GW, Li XP, Chen Y, Xiong W, Chen DL. Ginsenoside 20(s)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells. Chem Biol Interact 2015;242: 227-34. https://doi.org/10.1016/j.cbi.2015.10.014
  53. Chen Y, Shang H, Zhang S, Zhang X. Ginsenoside Rh2 inhibits proliferation and migration of medulloblastoma Daoy by down-regulation of microRNA31. J Cell Biochem 2018;119(8):6527-34. https://doi.org/10.1002/jcb.26716
  54. Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1- dependent inhibition of cyclin-dependent kinases. Pharm Res 2009;26(10): 2280-8. https://doi.org/10.1007/s11095-009-9944-9
  55. Li Q, Li B, Dong C, Wang Y, Li Q. 20(S)-Ginsenoside Rh2 suppresses proliferation and migration of hepatocellular carcinoma cells by targeting EZH2 to regulate CDKN2A-2B gene cluster transcription. Eur J Pharmacol 2017;815: 173-80. https://doi.org/10.1016/j.ejphar.2017.09.023
  56. Lee KY, Park JA, Chung E, You HL, Lee SK. Ginsenoside-Rh2 blocks the cell cycle of SK-HEP-1 cells at the G1/S boundary by selectively inducing the protein expression of p27kip1. Cancer Letters 1996;110(1-2):193-200. https://doi.org/10.1016/S0304-3835(96)04502-8
  57. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2001;19(56):6550-65. https://doi.org/10.1038/sj/onc/1204082
  58. Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, Liu Y. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol 2014;35(6):5593-8. https://doi.org/10.1007/s13277-014-1739-x
  59. Li S, Guo W, Gao Y, Liu Y. Ginsenoside Rh2 inhibits growth of glioblastoma multiforme through mTor. Tumour Biol 2015;36(4):2607-12. https://doi.org/10.1007/s13277-014-2880-2
  60. Yang J, Yuan D, Xing T, Su H, Zhang S, Wen J, Bai Q, Dang D. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZbinding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016;40(4):400-8. https://doi.org/10.1016/j.jgr.2016.03.007
  61. Wu N, Wu GC, Hu R, Li M, Feng H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol Sin 2011;32(3): 345-53. https://doi.org/10.1038/aps.2010.220
  62. Kim YS, Jin SH, Lee YH, Kim S, Park JD. Ginsenoside Rh2 induces apoptosis independently of Bcl-2, Bcl-xL or Bax in C6Bu-1 cells. Archives of Pharmacal Research 1999;22(5):448-53. https://doi.org/10.1007/BF02979151
  63. Gao Q, Zheng J. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Prolif 2018;51(3):e12438.
  64. Chen W, Qiu Y. Ginsenoside Rh2 targets EGFR by up-regulation of miR-491 to enhance anti-tumor activity in hepatitis B virus-related hepatocellular carcinoma. Cell Biochem Biophys 2015;72(2):325-31. https://doi.org/10.1007/s12013-014-0456-9
  65. Park JA, Kim K-W, Kim SI, Lee SK. Caspase 3 specifically cleaves p21WAF1/ CIP1 in the earlier stage of apoptosis in SK-HEP-1 human hepatoma cells. European Journal of Biochemistry 1998;257(1):242-8. https://doi.org/10.1046/j.1432-1327.1998.2570242.x
  66. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5(9):769-84. https://doi.org/10.1038/nrd2133
  67. Li S, Gao Y, Ma W, Cheng T, Liu Y. Ginsenoside Rh2 inhibits invasiveness of glioblastoma through modulation of VEGF-A. Tumour Biol 2015;37: 15477-82. https://doi.org/10.1007/s13277-015-3759-6
  68. Li H, Huang N, Zhu W, Wu J, Yang X, Teng W, Tian J, Fang Z, Luo Y, Chen M, et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018;18(1):579.
  69. Huang Y, Huang H, Han Z, Li W, Mai Z, Yuan R. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1. J Nanosci Nanotechnol 2019;19(4):1942-50. https://doi.org/10.1166/jnn.2019.16404
  70. Shi Q, Li J, Feng Z, Zhao L, Luo L, You Z, Li D, Xia J, Zuo G, Chen D. Effect of ginsenoside Rh2 on the migratory ability of HepG2 liver carcinoma cells: recruiting histone deacetylase and inhibiting activator protein 1 transcription factors. Mol Med Rep 2014;10(4):1779-85. https://doi.org/10.3892/mmr.2014.2392
  71. Han S, Jeong AJ, Yang H, Bin Kang K, Lee H, Yi EH, Kim BH, Cho CH, Chung JW, Sung SH, et al. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J Ethnopharmacol 2016;194:83-90. https://doi.org/10.1016/j.jep.2016.08.039
  72. Guan N, Huo X, Zhang Z, Zhang S, Luo J, Guo W. Ginsenoside Rh2 inhibits metastasis of glioblastoma multiforme through Akt-regulated MMP13. Tumour Biol 2015;36(9):6789-95. https://doi.org/10.1007/s13277-015-3387-1
  73. Zhang G, He L, Chen J, Xu B, Mao Z. Ginsenoside Rh2 activates alpha-catenin phosphorylation to inhibit lung cancer cell proliferation and invasion. Exp Ther Med 2020;19(4):2913-22.
  74. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017;17(9):528-42. https://doi.org/10.1038/nrc.2017.53
  75. Yang Z, Zhao T, Liu H, Zhang L. Ginsenoside Rh2 inhibits hepatocellular carcinoma through beta-catenin and autophagy. Sci Rep 2016;6:19383.
  76. Li M, Zhang D, Cheng J, Liang J, Yu F. Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and autophagy by down-regulating microRNA-638 in human retinoblastoma cells. Exp Mol Pathol 2019;108:17-23. https://doi.org/10.1016/j.yexmp.2019.03.004
  77. Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 2020;27(3):843-57.
  78. Wang J, Bian S, Wang S, Yang S, Zhang W, Zhao D, Liu M, Bai X. Ginsenoside Rh2 represses autophagy to promote cervical cancer cell apoptosis during starvation. Chin Med 2020;15(1):118.
  79. Musende AG, Eberding A, Jia W, Ramsay E, Bally MB, Guns ET. Rh2 or its aglycone aPPD in combination with docetaxel for treatment of prostate cancer. Prostate 2010;70(13):1437-47. https://doi.org/10.1002/pros.21179
  80. Xie X, Eberding A, Madera C, Fazli L, Jia W, Goldenberg L, Gleave M, Guns ES. Rh2 synergistically enhances paclitaxel or mitoxantrone in prostate cancer models. J Urol 2006;175(5):1926-31. https://doi.org/10.1016/S0022-5347(05)00891-8
  81. Zhu C, Liu F, Qian W, Zhang T, Li F. Combined effect of sodium selenite and ginsenoside Rh2 on HCT116 human colorectal carcinoma cells. Arch Iran Med 2016;19(1):23.
  82. Wang B, Wang F, Ding A, Zhao H, Bu X. Regorafenib and ginsenoside combination therapy: inhibition of HepG2 cell growth through modulating survivin and caspase-3 gene expression. Clin Transl Oncol 2020;22(9):1491-8. https://doi.org/10.1007/s12094-019-02283-9
  83. Lv DL, Chen L, Ding W, Zhang W, Wang HL, Wang S, Liu WB. Ginsenoside GRh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin Med 2018;13:11.
  84. Li N, Lin Z, Chen W, Zheng Y, Ming Y, Zheng Z, Huang W, Chen L, Xiao J, Lin H. Corilagin from longan seed: identification, quantification, and synergistic cytotoxicity on SKOv3ip and hey cells with ginsenoside Rh2 and 5- fluorouracil. Food Chem Toxicol 2018;119:133-40. https://doi.org/10.1016/j.fct.2018.05.018
  85. Li Q, Li Y, Wang X, Fang X, He K, Guo X, Zhan Z, Sun C, Jin YH. Co-treatment with ginsenoside Rh2 and betulinic acid synergistically induces apoptosis in human cancer cells in association with enhanced capsase-8 activation, bax translocation, and cytochrome c release. Mol Carcinog 2011;50(10):760-9. https://doi.org/10.1002/mc.20673
  86. Ren G, Wu C, Teng C, Yao Y. Synergistic effect of combined protopanaxatiol and ginsenoside Rh2 on antiproliferative activity in MDA-MB-231 human breast cancer cells in vitro. Food Agr Immunol 2018;29(1):953-63. https://doi.org/10.1080/09540105.2018.1490700
  87. Liu GW, Liu YH, Jiang GS, Ren WD. The reversal effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma cells and its mechanism. Hum Cell 2018;31(3):189-98. https://doi.org/10.1007/s13577-017-0189-3
  88. Liu J, Cai Q, Wang W, Lu M, Liu J, Zhou F, Sun M, Wang G, Zhang J. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin. Redox Biol 2020;32:101452.
  89. Zhang J, Zhou F, Wu X, Zhang X, Chen Y, Zha BS, Niu F, Lu M, Hao G, Sun Y, et al. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells. Br J Pharmacol 2012;165(1):120-34. https://doi.org/10.1111/j.1476-5381.2011.01505.x
  90. Wang Z, Zheng Q, Liu K, Li G, Zheng R. Ginsenoside Rh2 enhances antitumour activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol 2006;98(4):411-5. https://doi.org/10.1111/j.1742-7843.2006.pto_348.x
  91. Hou J, Yun Y, Xue J, Jeon B, Kim S. Doxorubicin-induced normal breast epithelial cellular aging and its related breast cancer growth through mitochondrial autophagy and oxidative stress mitigated by ginsenoside Rh2. Phytother Res 2020;34(7):1659-69. https://doi.org/10.1002/ptr.6636
  92. Hou JG, Jeon BM, Yun YJ, Cui CH, Kim SC. Ginsenoside Rh2 ameliorates doxorubicin-induced senescence bystander effect in breast carcinoma cell MDA-MB-231 and normal epithelial cell MCF-10a. Int J Mol Sci 2019;20(5): 1244.
  93. Gao H, Liang D, Li C, Xu G, Jiang M, Li H, Yin J, Song Y. 2-Deoxy-Rh2: a novel ginsenoside derivative, as dual-targeting anti-cancer agent via regulating apoptosis and glycolysis. Biomed Pharmacother 2020;124:109891.
  94. Verstraeten SL, Lorent JH, Mingeot-Leclercq MP. Lipid membranes as key targets for the pharmacological actions of ginsenosides. Front Pharmacol 2020;11:576887.
  95. Wu HC, Hu QR, Luo T, Wei WC, Wu HJ, Li J, Zheng LF, Xu QY, Deng ZY, Chen F. The immunomodulatory effects of ginsenoside derivative Rh2-O on splenic lymphocytes in H22 tumor-bearing mice is partially mediated by TLR4. Int Immunopharmacol 2021;101:108316.
  96. Wang Z, Ding M, Lin Z, He C, Zhao Y. Esterified derivatives of panaxadiol and their inhibitory effect on HL-60, THP-1, and PC-3 cell lines. Chem Biodivers 2019;16(8):e1900188.
  97. Zhang B, Ye H, Zhu XM, Hu JN, Li HY, Tsao R, Deng ZY, Zheng YN, Li W. Esterification enhanced intestinal absorption of ginsenoside Rh2 in Caco-2 cells without impacts on its protective effects against H2O2-induced cell injury in human umbilical vein endothelial cells (HUVECs). J Agric Food Chem 2014;62(9):2096-103. https://doi.org/10.1021/jf404738s
  98. Chen F, Deng ZY, Zhang B, Xiong ZX, Zheng SL, Tan CL, Hu JN. Esterification of ginsenoside Rh2 enhanced its cellular uptake and antitumor activity in human HepG2 cells. J Agric Food Chem 2016;64(1):253-61. https://doi.org/10.1021/acs.jafc.5b05450
  99. Qian G, Wang Z, Zhao J, Li D, Gao W, Wang B, Sui D, Qu X, Chen Y. Synthesis and anti-cancer cell activity of pseudo-ginsenoside Rh2. Steroids 2014;92: 1-6. https://doi.org/10.1016/j.steroids.2014.08.021
  100. Wang DD, Kim YJ, Baek NI, Mathiyalagan R, Wang C, Jin Y, Xu XY, Yang DC. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications. J Ginseng Res 2021;45(1):48-57. https://doi.org/10.1016/j.jgr.2019.11.004