DOI QR코드

DOI QR Code

Combined Antimicrobial Activity of Extracts from Quercus infectoria Galls and Scrophularia striata Aerial Parts for an Anticariogenic Herbal Mouthwash

  • Pooya, Falakdin (Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences) ;
  • Dara, Dastan (Department of Pharmacognosy, School of Pharmacy, Hamadan University of Medical Sciences) ;
  • Shabnam, Pourmoslemi (Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences)
  • Received : 2022.09.20
  • Accepted : 2023.01.30
  • Published : 2023.03.31

Abstract

Objectives: Dental caries is one of the most prevalent human diseases worldwide. The disease initiates with bacterial adherence to the tooth surface followed by the formation of dental plaques. Mutans streptococci and Candida albicans are principal oral microorganisms involved in the initiation and development of dental caries. Phytochemicals have been shown to possess promising antimicrobial properties against a wide range of microorganisms and can be used for the prevention and treatment of dental caries. Herein, we reviewed literature on plants that are traditionally used for their antimicrobial properties or possess promising anticariogenic activity. We selected aerial parts of Scrophularia striata (S. striata) and galls of Quercus infectoria (Q. infectoria) and investigated their antimicrobial activity against cariogenic microorganisms. Methods: Water soluble fractions were obtained from hydroalcoholic extracts of S. striata and Q. infectoria and their antimicrobial activity against Streptococcus mutans (S. mutans), Streptococcus sobrinus (S. sobrinus), and Candida albicans (C. albicans) was evaluated separately and in combination. The extracts were then used for preparing an herbal mouthwash whose stability and tannic acid content were evaluated over 60 days. Results: Q. infectoria gall extract possesses efficient antimicrobial activity that was synergistically enhanced in the presence of S. striata extract. Mouthwash prepared using these extracts showed desirable organoleptic characteristics, antimicrobial activity, and stability. Conclusion: Extracts of S. striata and Q. infectoria galls can be used together for preparing dental products with effective anticariogenic properties. Our study highlights the importance of extensive pharmacological investigations when using herbal products alone or in combination with other chemical substances.

Keywords

Acknowledgement

This work is adapted from the PharmD thesis of the first author at Hamadan University of Medical Sciences and supported by Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences, under (grant number 9811299113).

References

  1. Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000. 2012;60(1):15-39.  https://doi.org/10.1111/j.1600-0757.2011.00425.x
  2. Klinke T, Guggenheim B, Klimm W, Thurnheer T. Dental caries in rats associated with Candida albicans. Caries Res. 2011;45(2):100-6.  https://doi.org/10.1159/000324809
  3. Simon-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015;23(2):76-82.  https://doi.org/10.1016/j.tim.2014.10.010
  4. Oda Y, Hayashi F, Okada M. Longitudinal study of dental caries incidence associated with Streptococcus mutans and Streptococcus sobrinus in patients with intellectual disabilities. BMC Oral Health. 2015;15:102. 
  5. Featherstone JD. The science and practice of caries prevention. J Am Dent Assoc. 2000;131(7):887-99.  https://doi.org/10.14219/jada.archive.2000.0307
  6. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51-9.  https://doi.org/10.1016/S0140-6736(07)60031-2
  7. Livermore DM; British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother. 2011;66(9):1941-4.  https://doi.org/10.1093/jac/dkr262
  8. World Health Organization (WHO). WHO traditional medicine strategy: 2014-2023. Geneva: WHO; 2013. 
  9. Adib-Hajbaghery M, Hoseinian M. Knowledge, attitude and practice toward complementary and traditional medicine among Kashan health care staff, 2012. Complement Ther Med. 2014;22(1):126-32.  https://doi.org/10.1016/j.ctim.2013.11.009
  10. Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. J Ethnopharmacol. 2021;273:113592. 
  11. Onal A, Sari A, Soylak M. Ellagic acid from gallnut (Quercus infectoria): extraction and determination of its dyeing conditions for natural fibres. J Sci Ind Res. 2005;64(7):491-5. 
  12. Chusri S, Voravuthikunchai SP. Detailed studies on Quercus infectoria Olivier (nutgalls) as an alternative treatment for methicillin-resistant Staphylococcus aureus infections. J Appl Microbiol. 2009;106(1):89-96.  https://doi.org/10.1111/j.1365-2672.2008.03979.x
  13. Basri DF, Tan LS, Shafiei Z, Zin NM. In vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid Based Complement Alternat Med. 2012;2012:632796. 
  14. Baharuddin NS, Abdullah H, Abdul Wahab WN. Anti-Candida activity of Quercus infectoria gall extracts against Candida species. J Pharm Bioallied Sci. 2015;7(1):15-20.  https://doi.org/10.4103/0975-7406.148742
  15. Shao D, Li J, Li J, Tang R, Liu L, Shi J, et al. Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J Food Sci. 2015;80(6):M1299-305.  https://doi.org/10.1111/1750-3841.12902
  16. Mahboubi M, Kazempour N, Boland Nazar AR. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur J Nat Pharm Prod. 2013;8(1):15-9.  https://doi.org/10.17795/jjnpp-7621
  17. Monsef-Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR, Amini M. Flavonoids, cinnamic acid and phenyl propanoid from aerial parts of Scrophularia striata. Pharm Biol. 2010;48(3):333-6.  https://doi.org/10.3109/13880200903133829
  18. Bagheri Z, Larki-Harchegani A, Pourmoslemi S, Nili-Ahmadabadi A, Bakhtiari E, Safarpour H, et al. The antimicrobial and healing effect of Scrophularia striata Boiss hydroalcoholic extract on first- and second-grade pressure wounds in patients with brain and spinal cord injury: a randomized clinical trial. Evid Based Complement Alternat Med. 2022;2022:8522937. 
  19. Tamri P, Pourmoslemi S, Moradkhani S, Foroughinia S. Evaluation of synergistic antibacterial effect of combined Scrophularia striata extract and antibiotics against Pseudomonas aeruginosa and Methicillin- resistant Staphylococcus aureus. Iraqi J Pharm Sci. 2021;30(2):219-24.  https://doi.org/10.31351/vol30iss2pp219-224
  20. Xu X, Xu L, Yuan G, Wang Y, Qu Y, Zhou M. Synergistic combination of two antimicrobial agents closing each other's mutant selection windows to prevent antimicrobial resistance. Sci Rep. 2018;8(1):7237. 
  21. Afhami S, Borumand MA, Bazzaz NE, Saffar H, Hadadi A, Nezhad MJ, et al. Antimicrobial resistance pattern of Acinetobacter; a multicenter study, comparing European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI); evaluation of susceptibility testing methods for polymyxin. Immunopathol Persa. 2021;7(1):e04. 
  22. Kemegne GA, Sado Kamdem SL, Nyegue MA, Menut C, Etoa FX. Comparing checkerboard, isobologram and CCD methods for drug combination: a case study of ciprofloxacin and plant extracts on Escherichia coli and Shigella. J Med Plants Res. 2021;5(10):479-89. 
  23. Apridamayanti P, Sari R, Rachmaningtyas A, Aranthi V. Antioxidant, antibacterial activity and FICI (Fractional Inhibitory Concentration Index) of ethanolic extract of Melastoma malabathricum leaves with amoxicillin against pathogenic bacteria. Nus Biosci. 2021;13(2):140-7.  https://doi.org/10.13057/nusbiosci/n130202
  24. Sowmya, Raveesha KA. Antibacterial activity and time-kill assay of Terminalia catappa L. and Nigella sativa L. against selected human pathogenic bacteria. J Pure Appl Microbiol. 2021;15(1):285-99.  https://doi.org/10.22207/JPAM.15.1.22
  25. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42(4):321-4.  https://doi.org/10.1016/j.ymeth.2007.01.006
  26. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). EUCAST Definitive Document E.Def 1.2, May 2000. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect. 2000;6(9):503-8.  https://doi.org/10.1046/j.1469-0691.2000.00149.x
  27. Alimohammadi Z, Pourmoslemi S. Selective extraction of zolpidem from plasma using molecularly imprinted polymer followed by high performance liquid chromatography. Microchem J. 2021;162:105844. 
  28. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9(8):1-7.  https://doi.org/10.1046/j.1469-0691.2003.00790.x
  29. Mousavi SS, Karami A, Haghighi TM, Alizadeh S, Maggi F. Phytotoxic potential and phenolic profile of extracts from Scrophularia striata. Plants (Basel). 2021;10(1):135. 
  30. Feng X, Hou X, Cui C, Sun S, Sadik S, Wu S, et al. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng Regen. 2021;2:57-62.  https://doi.org/10.1016/j.engreg.2021.05.002
  31. Wang C, Zhou H, Niu H, Ma X, Yuan Y, Hong H, et al. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomater Sci. 2018;6(12):3318-31.  https://doi.org/10.1039/c8bm00837j
  32. Mustafa H, Ismail N, Wahab WNAWA. Anti-microbial activity of aqueous Quercus infectoria gall extract against pathogenic Leptospira. Malays J Med Sci. 2018;25(4):42-50.  https://doi.org/10.21315/mjms2018.25.4.4
  33. Noel DJ, Keevil CW, Wilks SA. Synergism versus additivity: defining the interactions between common disinfectants. mBio. 2021;12(5):e0228121. 
  34. Bensalah N, Chair K, Bedoui A. Efficient degradation of tannic acid in water by UV/H2O2 process. Sustain Environ Res. 2018;28(1):1-11.  https://doi.org/10.1016/j.serj.2017.04.004
  35. Kim TJ, Silva JL, Jung YS. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011;126(1):116-20. https://doi.org/10.1016/j.foodchem.2010.10.086