DOI QR코드

DOI QR Code

A Review of Clinical and Preclinical Studies on the Therapeutic Potential of Black Seeds (Nigella sativa) in the Management of Polycystic Ovarian Syndrome (PCOS)

  • Rajkapoor, Balasubramanian (Department of Pharmacology, J.K.K. Nattraja College of Pharmacy) ;
  • Naina Mohamed Pakkir, Maideen (Department of Clinical Pharmacy, Dubai Health Authority) ;
  • Sudha, Muthusamy (Department of Pharmacology, The Erode College of Pharmacy) ;
  • Mirunalini, Gobinath (Ratnam Institute of Pharmacy)
  • Received : 2022.02.20
  • Accepted : 2023.02.15
  • Published : 2023.03.31

Abstract

Objectives: Polycystic ovary syndrome (PCOS) is a condition that occurs frequently among women of reproductive age and is a polygenic, multifactorial, endocrine, and metabolic disorder. PCOS is becoming more common as a result of risk factors such as current lifestyle, overnutrition, and stress. The use of traditional herbal medicine is higher among the global population. Hence, this review article focuses on the potential of Nigella sativa to manage women with PCOS. Methods: A literature search was carried out using databases including Medline, Google Scholar, EBSCO, Embase, and Science Direct, as well as reference lists, to identify relevant publications that support the use of N. sativa in the management of women with PCOS. Results: Several clinical and preclinical studies have demonstrated that the major bioactive constituent of black seed (N. sativa), thymoquinone, has potential for managing women with PCOS. Moreover, N. sativa may help to manage oligomenorrhea and amenorrhea in women with PCOS through its anti-inflammatory and antioxidant properties. Conclusion: N. sativa has potential for use as a herbal medicine for managing women with PCOS as an integrative medicine along with traditional and modern medicine in conjunction with calorie restriction and regular exercise.

Keywords

Acknowledgement

The authors express sincere gratefulness to Principal, J.K.K. Nattraja College of Pharmacy, Komarapalayam, for giving an opportunity and online library facilities to write this article.

References

  1. Rao MMS, Broughton KS, LeMieux MJ. Cross-sectional study on the knowledge and prevalence of PCOS at a multiethnic university. Prog Prev Med. 2020;5(2):e0028. https://doi.org/10.1097/pp9.0000000000000029
  2. De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016;14(1):38.
  3. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020;35:100937.
  4. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057.
  5. Zeng X, Xie YJ, Liu YT, Long SL, Mo ZC. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta. 2020;502:214-21. https://doi.org/10.1016/j.cca.2019.11.003
  6. Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: what's new? Adv Clin Exp Med. 2017;26(2):359-67. https://doi.org/10.17219/acem/59380
  7. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467-520. https://doi.org/10.1210/er.2015-1104
  8. Escobar-Morreale HF, Luque-Ramirez M, Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril. 2011;95(3):1048-58.e1-2. https://doi.org/10.1016/j.fertnstert.2010.11.036
  9. Rostamtabar M, Esmaeilzadeh S, Tourani M, Rahmani A, Baee M, Shirafkan F, et al. Pathophysiological roles of chronic lowgrade inflammation mediators in polycystic ovary syndrome. J Cell Physiol. 2021;236(2):824-38. https://doi.org/10.1002/jcp.29912
  10. Abraham Gnanadass S, Divakar Prabhu Y, Valsala Gopalakrishnan A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update. Arch Gynecol Obstet. 2021;303(3):631-43. https://doi.org/10.1007/s00404-020-05951-2
  11. Mohammadi M. Oxidative stress and polycystic ovary syndrome: a brief review. Int J Prev Med. 2019;10:86.
  12. Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016;2016:8589318.
  13. Dubey P, Reddy S, Boyd S, Bracamontes C, Sanchez S, Chattopadhyay M, et al. Effect of nutritional supplementation on oxidative stress and hormonal and lipid profiles in PCOS-affected females. Nutrients. 2021;13(9):2938.
  14. Witchel SF, Oberfield SE, Pena AS. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc. 2019;3(8):1545-73. https://doi.org/10.1210/js.2019-00078
  15. Maqbool M, Gani I, Geer MI. Polycystic ovarian syndrome- a multifaceted disease: a review. Int J Pharm Sci Res. 2019;10(3):1072-79.
  16. Chaudhari AP, Mazumdar K, Mehta PD. Anxiety, depression, and quality of life in women with polycystic ovarian syndrome. Indian J Psychol Med. 2018;40(3):239-46. https://doi.org/10.4103/IJPSYM.IJPSYM_561_17
  17. Lentscher JA, Slocum B, Torrealday S. Polycystic ovarian syndrome and fertility. Clin Obstet Gynecol. 2021;64(1):65-75. https://doi.org/10.1097/GRF.0000000000000595
  18. Bansal S, Goyal M, Sharma C, Shekhar S. Letrozole versus clomiphene citrate for ovulation induction in anovulatory women with polycystic ovarian syndrome: a randomized controlled trial. Int J Gynaecol Obstet. 2021;152(3):345-50. https://doi.org/10.1002/ijgo.13375
  19. Hoeger KM, Dokras A, Piltonen T. Update on PCOS: consequences, challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106(3):e1071-83. https://doi.org/10.1210/clinem/dgaa839
  20. Costello MF, Misso ML, Balen A, Boyle J, Devoto L, Garad RM, et al. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: assessment and treatment of infertility. Hum Reprod Open. 2019;2019(1):hoy021.
  21. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-18. https://doi.org/10.1093/humrep/dey256
  22. Lua ACY, How CH, King TFJ. Managing polycystic ovary syndrome in primary care. Singapore Med J. 2018;59(11):567-71. https://doi.org/10.11622/smedj.2018135
  23. Maideen NMP, Balasubramaniam R. Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with common herbs. J Herbmed Pharmacol. 2018;7(3):200-10. https://doi.org/10.15171/jhp.2018.32
  24. Maideen NMP, Balasubramanian R, Ramanathan S. Nigella sativa (Black Seeds), a potential herb for the pharmacotherapeutic management of hypertension - a review. Curr Cardiol Rev. 2021;17(4):e230421187786.
  25. Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, et al. An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med. 2021;25:100404.
  26. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone. J Pharmacopuncture. 2017;20(3):179-93. https://doi.org/10.3831/KPI.2017.20.021
  27. Zaoui A, Cherrah Y, Mahassini N, Alaoui K, Amarouch H, Hassar M. Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine. 2002;9(1):69-74. https://doi.org/10.1078/0944-7113-00084
  28. Lou WP, Assaw S, Lokman MA, Suhaimin N, Yusof HM. Subacute toxicity of black seed (Nigella sativa) and honey mixture. Malays Appl Biol. 2018;47(6):11-8.
  29. Tubesha Z, Imam MU, Mahmud R, Ismail M. Study on the potential toxicity of a thymoquinone-rich fraction nanoemulsion in Sprague Dawley rats. Molecules. 2013;18(7):7460-72. https://doi.org/10.3390/molecules18077460
  30. Maideen NMP. Prophetic medicine-nigella sativa (black cumin seeds) - potential herb for COVID-19? J Pharmacopuncture. 2020;23(2):62-70. https://doi.org/10.3831/KPI.2020.23.010
  31. Naeimi SA, Tansaz M, Sohrabvand F, Hajimehdipoor H, Nabimeybodi R, Saber S, et al. Assessing the effect of processed nigella sativa on oligomenorrhea and amenorrhea in patients with polycystic ovarian syndrome: a pilot study. Int J Pharm Sci Res. 2018;9(11):4716-22.
  32. Arivoli D. A prospective open labelled phase-II non randomized clinical trial on "Karunjchirakam Chooranam" for Raktha Soorai Vaayu (Poly Cystic Ovarian Syndrome) [dissertation]. [Palayamkottai]: Government Siddha Medical College; 2019.
  33. Naeimi SA, Tansaz M, Hajimehdipoor H, Saber S. Comparing the effect of nigella sativa oil soft gel and placebo on oligomenorrhea, amenorrhea and laboratory characteristics in patients with polycystic ovarian syndrome, a randomized clinical trial. Res J Pharmacogn. 2020;7(1):49-58.
  34. Kohzadi R, Nejati V, Razi M, Najafi G. Effects Hydro-alcoholic extract of (Nigella sativa L.) on the level of malondialdehyde (MDA) and total antioxidant capacity (TAC) of the ovary tissue in a rat model of PCOS. J Anim Environ. 2017;9(3):85-92.
  35. Taghvaee Javanshir S, Yaghmaei P, Hajebrahimi Z. Thymoquinone ameliorates some endocrine parameters and histological alteration in a rat model of polycystic ovary syndrome. Int J Reprod Biomed. 2018;16(4):275-84. https://doi.org/10.29252/ijrm.16.4.275
  36. Nafiu AB, Alimi S, Babalola A, Ogunlade AT, Muhammad FD, Abioye ARAI, et al. Anti-androgenic and insulin-sensitizing actions of Nigella sativa oil improve polycystic ovary and associated dyslipidemia and redox disturbances. J Complement Med Res. 2019;10(4):186-99. https://doi.org/10.5455/jcmr.20190613045154
  37. Eini F, Joharchi K, Kutenaei MA, Mousavi P. Improvement in the epigenetic modification and development competence in PCOS mice oocytes by hydro-alcoholic extract of Nigella sativa during in-vitro maturation: an experimental study. Int J Reprod Biomed. 2020;18(9):733-46. https://doi.org/10.18502/ijrm.v13i9.7668
  38. Naseran SN, Mokhtari M, Abedinzade M, Shariati M. Evaluation of the effect of nigella sativa hydro-alcoholic extract and honey on gonadotropins and sex hormones level in the polycystic ovarian syndrome model of Wistar rat. Sci J Kurd Univ Med Sci. 2020;25(1):117-29. https://doi.org/10.52547/sjku.25.1.117
  39. Khani S, Abdollahi M, Khalaj A, Heidari H, Zohali S. The effect of hydroalcoholic extract of Nigella Sativa seed on dehydroepiandrosterone-induced polycystic ovarian syndrome in rats: an experimental study. Int J Reprod Biomed. 2021;19(3):271-82. https://doi.org/10.18502/ijrm.v19i3.8575
  40. Gonzalez F. Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids. 2012;77(4):300-5. https://doi.org/10.1016/j.steroids.2011.12.003
  41. Aboeldalyl S, James C, Seyam E, Ibrahim EM, Shawki HE, Amer S. The role of chronic inflammation in polycystic ovarian syndrome- a systematic review and meta-analysis. Int J Mol Sci. 2021;22(5):2734.
  42. Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci. 2021;22(7):3789.
  43. Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Egea FM. Chronic Inflammation in PCOS: the potential benefits of specialized pro-resolving lipid mediators (SPMs) in the improvement of the resolutive response. Int J Mol Sci. 2020;22(1):384.
  44. Goswami S, Choudhuri S, Bhattacharya B, Bhattacharjee R, Roy A, Mukhopadhyay S, et al. Chronic inflammation in polycystic ovary syndrome: a case-control study using multiple markers. Int J Reprod Biomed. 2021;19(4):313-20. https://doi.org/10.18502/ijrm.v19i4.9057
  45. Barlampa D, Bompoula MS, Bargiota A, Kalantaridou S, Mastorakos G, Valsamakis G. Hypothalamic inflammation as a potential pathophysiologic basis for the heterogeneity of clinical, hormonal, and metabolic presentation in PCOS. Nutrients. 2021;13(2):520.
  46. Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int J Mol Sci. 2021;22(8):3923.
  47. Mahdavi R, Namazi N, Alizadeh M, Farajnia S. Nigella sativa oil with a calorie-restricted diet can improve biomarkers of systemic inflammation in obese women: a randomized double-blind, placebo-controlled clinical trial. J Clin Lipidol. 2016;10(5):1203-11. https://doi.org/10.1016/j.jacl.2015.11.019
  48. Hadi S, Mirmiran P, Daryabeygi-Khotbesara R, Hadi V. Effect of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress among people with type 2 diabetes mellitus: a randomized, double-blind, placebo controlled trial. Prog Nutr. 2018;20 Suppl 1:127-33.
  49. Amizadeh S, Rashtchizadeh N, Khabbazi A, Ghorbanihaghjo A, Ebrahimi AA, Vatankhah AM, et al. Effect of Nigella sativa oil extracts on inflammatory and oxidative stress markers in Behcet's disease: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J Phytomed. 2020;10(2):181-9.
  50. Almatroodi SA, Alnuqaydan AM, Alsahli MA, Khan AA, Rahmani AH. Thymoquinone, the most prominent constituent of Nigella sativa, attenuates liver damage in streptozotocin-induced diabetic rats via regulation of oxidative stress, inflammation and cyclooxygenase-2 protein expression. Appl Sci. 2021;11(7):3223.
  51. Hajipour S, Sarkaki A, Dianat M, Rashno M, Khorsandi LS, Farbood Y. The effects of thymoquinone on memory impairment and inflammation in rats with hepatic encephalopathy induced by thioacetamide. Metab Brain Dis. 2021;36(5):991-1002. https://doi.org/10.1007/s11011-021-00688-6
  52. Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Antiinflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother. 2021;138:111492.
  53. Mancini A, Bruno C, Vergani E, d'Abate C, Giacchi E, Silvestrini A. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights. Int J Mol Sci. 2021;22(4):1667.
  54. Sulaiman MA, Al-Farsi YM, Al-Khaduri MM, Saleh JM, Waly MI. Association of oxidative stress with polycystic ovarian syndrome in Oman: a case-control study. FASEB J. 2018;32 Suppl 1:787.11.
  55. Enechukwu CI, Onuegbu AJ, Olisekodiaka MJ, Eleje GU, Ikechebelu JI, Ugboaja JO, et al. Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstet Gynecol Sci. 2019;62(5):335-43. https://doi.org/10.5468/ogs.2019.62.5.335
  56. Liu Y, Yu Z, Zhao S, Cheng L, Man Y, Gao X, et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J Assist Reprod Genet. 2021;38(2):471-7. https://doi.org/10.1007/s10815-020-02014-y
  57. Ahmed JH, Ibraheem AY, Al-Hamdi KI. Evaluation of efficacy, safety and antioxidant effect of Nigella sativa in patients with psoriasis: a randomized clinical trial. J Clin Exp Invest. 2014;5(2):186-93. https://doi.org/10.5799/ahinjs.01.2014.02.0387
  58. El-Shanshory M, Hablas NM, Aboonq MS, Fakhreldin AR, Attia M, Arafa W, et al. Nigella sativa improves anemia, enhances immunity and relieves iron overload-induced oxidative stress as a novel promising treatment in children having beta-thalassemia major. J Herb Med. 2019;16:100245.
  59. Alkis H, Demir E, Taysi MR, Sagir S, Taysi S. Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed Pharmacother. 2021;139:111540.
  60. Alzohairy MA, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. Protective effects of thymoquinone, an active compound of Nigella sativa, on rats with Benzo(a)pyrene-induced lung injury through regulation of oxidative stress and inflammation. Molecules. 2021;26(11):3218.
  61. Liang J, Lian L, Wang X, Li L. Thymoquinone, extract from Nigella sativa seeds, protects human skin keratinocytes against UVA-irradiated oxidative stress, inflammation and mitochondrial dysfunction. Mol Immunol. 2021;135:21-7. https://doi.org/10.1016/j.molimm.2021.03.015
  62. Noh S, Go A, Kim DB, Park M, Jeon HW, Kim B. Role of antioxidant natural products in management of infertility: a review of their medicinal potential. Antioxidants (Basel). 2020;9(10):957.
  63. Forouzanfar F, Hosseinzadeh H. Protective role of Nigella sativa and thymoquinone in oxidative stress: a review. In: Preedy VR, Watson RR, editors. Nuts and seeds in health and disease prevention. 2nd ed. London: Academic Press; 2020. p. 127-46.