DOI QR코드

DOI QR Code

이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과

Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells

  • 김철환 (국립낙동강생물자원관) ;
  • 이영경 (국립낙동강생물자원관) ;
  • 김민진 (국립낙동강생물자원관) ;
  • 최지수 (국립낙동강생물자원관) ;
  • 황병수 (국립낙동강생물자원관) ;
  • 조표연 (국립낙동강생물자원관) ;
  • 김영준 (고려대학교 식품규제과학과) ;
  • 정용태 (국립낙동강생물자원관)
  • Chul Hwan, Kim (Nakdonggang National Institute of Biological Resources) ;
  • Young-Kyung, Lee (Nakdonggang National Institute of Biological Resources) ;
  • Min Jin, Kim (Nakdonggang National Institute of Biological Resources) ;
  • Ji Su, Choi (Nakdonggang National Institute of Biological Resources) ;
  • Buyng Su, Hwang (Nakdonggang National Institute of Biological Resources) ;
  • Pyo Yun, Cho (Nakdonggang National Institute of Biological Resources) ;
  • Young Jun, Kim (Department of Food Regulatory Science, Korea University) ;
  • Yong Tae, Jeong (Nakdonggang National Institute of Biological Resources)
  • 투고 : 2022.10.17
  • 심사 : 2022.11.25
  • 발행 : 2023.02.01

초록

이삭물수세미는 민간에서는 전초를 고름, 염증 등에 약용으로 사용하였으나, 염증에 대한 연구가 미비한 상황이다. 이에 본 연구에서는 이삭물수세미 추출물(EMS)의 항산화 효능과 항염증 효능을 분석하였다. 항산화 효능은 DPPH 라디칼 소거능과 환원력을 통해 산화적 스트레스를 통해 염증을 유발시킬 수 있는 ROS (Hong et al., 2020; Snezhkina et al., 2019)를 억제하는지 확인하였고, 항염증 효능은 염증 발현 인자인 LPS를 이용하여 RAW 264.7 대식세포에 염증을 유도한 뒤 pro-inflammatory cytokine (TNF-α, IL-1β)과 염증 매개체(NO, PGE2)의 억제 및 TLR4/Myd88/NF-κB signaling pathway 발현 억제를 통해 확인하였다. 연구 결과, 항산화 효능에 있어서는 DPPH 라디칼 소거능과 Fe3+를 Fe2+로 환원시키는 환원력이 농도 의존적으로 증가함을 확인하였다. 무독성 상태에서 실험하기 위해 LPS와 EMS를 처리한 RAW 264.7 대식세포에서 90% 이상의 생존율을 나타내는 조건에서 실험을 진행하였다. LPS로 염증이 유도된 RAW 264.7 세포에서 EMS는 염증 매개 인자의 발현 및 생성 억제(iNOS에 의한 NO 생성 및 COX-2에 의한 PGE2 생성억제)와 pro-inflammatory cytokine (TNF-α 및 IL-1β)의 생성 또한 억제하였다. 특이적으로 COX-2에 의한 PGE2 생성 억제에서는 고농도에서 작용함을 확인하였고, IL-1β에서는 약한 억제력을 보였다. 이후 signaling pathway에서 염증 전사인자 경로를 확인하기 위하여 TLR4/MyD88의 활성을 확인하였고, EMS 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 이에 따라 염증 초기 단계에서 NF-κB p65가 nuclear로 들어가는 것을 억제하는지 확인하기 위해 early time (LPS 처리 후 30, 60 min) 조건으로 nuclear에서 p65 인산화를 확인하였다. 그 결과, LPS 자극으로 인해 증가된 p65 인산화가 EMS에 의해 부분적으로 억제됨을 확인하였다. 이상의 결과를 통해 LPS로 염증이 유도된 RAW 264.7 대식세포에서 EMS가 COX-2에 의한 PGE2 생성 억제와 IL-1β의 생성에 있어 낮은 억제력을 가진 반면, iNOS에 의한 NO과 TNF-α 생성 및 TLR4/MyD88 singnaling pathway에 있어 강한 억제력을 가짐을 확인하였다. 결론적으로 EMS가 ROS를 제거하고 TLR4/MyD88/NF-κB signaling pathway를 억제함으로써 염증 인자들의 전사를 억제하고, 염증 인자 부분에서는 iNOS에 의한 NO 생성과 TNF-α 생성을 강하게 억제하여 RAW 264.7 대식세포에서 LPS로 자극된 염증을 억제하는 것으로 판단된다. 또한 TLR4/Myd88/NF-κB signaling pathway를 통한 pro-inflammatory cytokine과 염증 매개체와의 연관성에 대한 기초자료로 활용할 수 있는 근거 자료가 될 수 있을 것으로 생각된다.

Myriophyllum spicatum L. has been used as an ornamental in ponds and aquariums, and as a folk remedy for inflammation and pus. Nevertheless, the biological activity and underlying mechanisms of anti-inflammatory effects are unclear. This study is aimed at investigating the antioxidative and anti-inflammatory activities of ethanol extract of Myriophyllum spicatum L. (EMS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Antioxidant activity of EMS was assessed by radical-scavenging effects on ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. As inflammatory response parameters produced by LPS-stimulated RAW 264.7 cells were quantified to assess the anti-inflammatory activity of EMS. Our results showed that EMS increased FRAP and DPPH radical-scavenging activity. In EMS-treated RAW 264.7 cells, the production of NO, PGE2, TNF-α and IL-1β was significantly inhibited at the non-cytotoxic concentration. In addition, EMS significantly attenuated LPS-stimulated the toll-like receptor (TLR) 4/myeloid differentiation protein (MyD) 88 signaling pathway, and inhibited nuclear translocation of nuclear factor-kappa B(NF-κB). Positive correlations were noted between anti-inflammatory activity and antioxidant activity. In conclusion, it was indicated that EMS suppresses the transcription of inflammatory factors by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing LPS-stimulated inflammation in RAW 264.7 cells. This study highlights the potential role of EMS against inflammation and associated diseases.

키워드

과제정보

본 논문은 환경부의 재원으로 국립낙동강생물자원관(NNIBR 202202104)의 지원을 받아 수행된 연구이며, 이에 감사드립니다.

참고문헌

  1. Anwar, M.A., S. Basith and S. Choi. 2013. Negative regulatory approaches to the attenuation of toll-like receptor signaling. Exp. Mol. Med. 45(2):e11.
  2. Atreya, R. and M.F. Neurath. 2005. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin. Rex. Allergy Immunol. 28(3):187-196. https://doi.org/10.1385/CRIAI:28:3:187
  3. Babcock, T.A., W.S. Helton, K.N. Anwar, Y.Y. Zhao and N.J. Espat. 2004. Synergistic anti-inflammatory activity of omega-3 lipid and rofecoxib pretreatment on macrophage proinflammatory cytokine production occurs via divergent NF-kappaB activation. J. Parenter Enteral. Nutr. 28(4):232-239. https://doi.org/10.1177/0148607104028004232
  4. Braddock, M. and A. Quinn. 2004. Targeting IL-1 in inflammatory disease: New opportunities for therapeutic intervention. Nat. Rev. Drug Discov. 3(4):330-339. https://doi.org/10.1038/nrd1342
  5. Chainy, G.B.N. and D.K. Sahoo. 2020, Hormones and oxidative stress: An overview. Free Radic. Res. 54(1):1-26. https://doi.org/10.1080/10715762.2019.1702656
  6. Cheel, J., C. Theoduloz, J. Rodriguez and G. Schmeda-Hirschmann. 2005. Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric. Food Chem. 53(7):2511-2517. https://doi.org/10.1021/jf0479766
  7. Chelombitko, M.A. 2018. Role of reactive oxygen species in inflammation: A minireview. Moscow Univ. Biol. Sci. Bull. 73(4):199-202. https://doi.org/10.3103/s009639251804003x
  8. Cheng, B.C.Y., X.Q. Ma, H.Y. Kwan, K.W. Tse, H.H. Cao, T. Su, X. Shu, Z.Z. Wu and Z.L. Yu. 2014. A herbal formula consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. 153(3):922-927. https://doi.org/10.1016/j.jep.2014.02.029
  9. Choi, H.Y., J.E. Lim and J.H. Hong. 2010. Curcumin interrupts the interaction between the androgen receptor and Wnt/β -catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis. 13(4):343-349. https://doi.org/10.1038/pcan.2010.26
  10. Church, L.D. and M.F. McDermott. 2009. Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr. Opin. Mol. Ther. 11(1):81-89.
  11. Coleman, J.W. 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1(8):1397-1406. https://doi.org/10.1016/S1567-5769(01)00086-8
  12. Cui, E.J., H.N. Lyu, M.C. Song, H.J. Yang, S.J. Nam, S.K. Park, H.K. Choi, I.S. Chung and N.I. Baek. 2008. Isolation and identification of Quercitrin from Myriophyllum spicatum L. Korean J. Medicinal Crop Sci. 27:62-65.
  13. Dinarello, C.A. 1996. Biological basis for Interleukin-1 in disease. Blood 87(6):2095-2147. https://doi.org/10.1182/blood.v87.6.2095.bloodjournal8762095
  14. Dinarello, C.A. 2004. Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr. Opin. Pharmacol. 4:378-385. https://doi.org/10.1016/j.coph.2004.03.010
  15. Fang, H., P.F. Wang, Y. Zhou, Y.C. Wang and Q.W. Yang. 2013. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J. Neuroinflammation 10(1):1-10. https://doi.org/10.1186/1742-2094-10-27
  16. Feghali, C.A. and T.M. Wright. 1997. Cytokines in acute and chronic inflammation. Front. Biosci. 2(4):12-26.
  17. Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol. Ther. 100:171-194. https://doi.org/10.1016/j.pharmthera.2003.08.003
  18. Gross, E.M., H. Meyer and G. Schilling. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41(1):133-138. https://doi.org/10.1016/0031-9422(95)00598-6
  19. Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13(2):85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  20. Guzik, T., R. Korbut and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation. J. Physiol. Pharmacol. 54(4):469-487.
  21. Hong, S., P. Pangloli, R. Perumal, S. Cox, L.E. Noronha, V.P. Dia and D. Smolensky. 2020. A comparative study on phenolic content, antioxidant activity and anti-inflammatory capacity of aqueous and ethanolic extracts of sorghum in lipopolysaccharide-induced RAW 264.7 macrophages. Antioxidants 9(12):1297.
  22. Jeong, J.W., H.H. Lee, M.H. Han, G.Y. Kim, W.J. Kim and Y.H. Choi. 2014. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem. Biol. Interact. 212:30-39. https://doi.org/10.1016/j.cbi.2014.01.012
  23. Jones, N, J. Blagih, F. Zani, A. Rees, D.G. Hill, B.J. Jenkins, C.J. Bull, D. Moreira, A.I.M. Bantan, J.G. Cronin, D. Avancini, G.W. Jones, D.K. Finlay, K.H. Vousden, E.E. Vincent and C.A. Thornton. 2021. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nat. Commun. 12(1):1209.
  24. Kawahara, K., H. Hohjoh, T. Inazumi, S. Tsuchiya and Y. Sugimoto. 2015. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta. 1851(4):414-421. https://doi.org/10.1016/j.bbalip.2014.07.008
  25. Kim, C.H., Y.K. Lee, J.W. Jeong, B.S. Hwang, Y.T. Jeong, Y.T. Oh, P.Y. Cho and C.H. Kang. 2021a. Anti-inflammatory effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 cells through regulation of MAPK signaling pathway. Korean J. Plant Res. 34(1):23-30. https://doi.org/10.7732/KJPR.2021.34.1.023
  26. Kim, D.H., E.Y. Hwang and J.H. Son. 2013. Anti-inflammatory activity of Carthamus tinctorious seed extracts in Raw 264.7 cells. J. Life Sci. 23(1):55-62 (in Korean). https://doi.org/10.5352/JLS.2013.23.1.55
  27. Kim, D.S., H.J. Eo, Y. Kang and G.H. Park. 2021b. Anti-inflammatory effect of Berchemia berchemiaefolia leaves through inhibition of NF-κB and MAPK signaling activation in LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 34(1):31-36. https://doi.org/10.7732/KJPR.2021.34.1.031
  28. Kim, J.H., H.N. Song, H.C. Ko, J.Y. Lee, M.G. Jang and S.J. Kim. 2017. Anti-oxidant and anti-inflammatory properties of Clerodendrum trichotomum leaf extracts. J. Life Sci. 27(6):640-645 (in Korean). https://doi.org/10.5352/JLS.2017.27.6.640
  29. Kim, S.H. and S.A. Kang. 2019. Anti-inflammatory effects of beopje processed curly dock (Rumex crispus L.) in LPS-induced murine RAW 264.7 cell lines. Korean J. Food & Nutr. 32(5):408-416 (in Korean).
  30. Laksmitawati, D.R., A.P. Prasanti, N. Larasinta, G.A. Syauta, R. Hilda, H.U. Ramadaniati, A. Widyastuti, N. Karami, M. Afni, D.D. Rihibiha, W. Widowati and H.S.W. Kusuma. 2016. Anti-inflammatory potential of gandarusa (Gendarussa vulgaris Nees) and soursoup (Annona muricata L) extracts in LPS stimulated-macrophage cell (RAW264.7). J. Nat. Remedies 16(2):73-81. https://doi.org/10.18311/jnr/2016/5367
  31. Lee, S.H., E.J. Lee, C. Chung, H.Y. Sohn and J.S. Kim. 2019. Hesperetin ameliorates inflammatory responses in lipopolysaccharide-stimulated RAW 264.7 cells via p38 MAPK and ERK1/2. J. Life Sci. 29(1):129-134 (in Korean). https://doi.org/10.5352/JLS.2019.29.1.129
  32. Lee, W.J. 2011. Fiber type specific expression of toll-like receptor4, IL-6, TNF-α, and suppressor of cytokine signaling-3 after acute exercise in rat skeletal muscles. J. Life Sci. 21(9):1259-1265 (in Korean). https://doi.org/10.5352/JLS.2011.21.9.1259
  33. Li, G.Z., Y. Zhang, J.B. Zhao, G.J. Wu, X.F. Su and C.H. Hang. 2011. Expression of myeloid differentiation primary response protein 88 (Myd88) in the cerebral cortex after experimental traumatic brain injury in rats. Brain Res. 1396:96-104. https://doi.org/10.1016/j.brainres.2011.04.014
  34. Lopez-Castejon, G. and D. Brough. 2011. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22(4):189-195. https://doi.org/10.1016/j.cytogfr.2011.10.001
  35. Melendez-Martinez, A.J. 2019. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol. Nutr. Food Res. 63:e1801045.
  36. Nakai, S., S. Yamada and M. Hosomi. 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543(1):71-78. https://doi.org/10.1007/s10750-004-6822-7
  37. Nakai, S., Y. Inoue, M. Hosomi and A. Murakami. 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res. 34(11):3026-3032. https://doi.org/10.1016/S0043-1354(00)00039-7
  38. Needleman, P. and P.C. Isakson. 1997. The discovery and function of COX-2. J. Rheumatol. Suppl. 49:6-8.
  39. Nemmar, A, S. Beegam, N.E. Zaaba, S. Alblooshi, S. Alseiari and B.H. Ali. 2022. The salutary effects of catalpol on diesel exhaust particles-induced thrombogenic changes and cardiac oxidative stress, inflammation and apoptosis. Biomedicines 10(1):99.
  40. Parameswaran, N. and S. Patial. 2010. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20(2):87-103. https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10
  41. Ren, K. and R. Torres. 2009. Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 60(1):57-64. https://doi.org/10.1016/j.brainresrev.2008.12.020
  42. Sambon, M, A. Gorlova, A. Demelenne, J. Alhama-Riba, B. Coumans, B. Lakaye, P. Wins, M. Fillet, D.C. Anthony, T. Strekalova and L. Bettendorff. 2020. Dibenzoylthiamine has powerful antioxidant and anti-inflammatory properties in cultured cells and in mouse models of stress and neurodegeneration. Biomedicines 8(9):361.
  43. Seo, H.J. and J.B. Jeong. 2020. Immune-enhancing effects of green lettuce (Lactuca sativa L.) extracts through the TLR4-MAPK/NF-κB signaling pathways in RAW264.7 macrophage cells. Korean J. Plant Res. 33(3):183-193. https://doi.org/10.7732/KJPR.2020.33.3.183
  44. Seo, K.H., J.Y. Park, H.J. Noh, J.Y. Lee, E.Y. Lee, J.G. Han, J.H. Kim and M.S. Cheong. 2018. Anti-inflammatory effects of various mushrooms in LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 31(5):478-488. https://doi.org/10.7732/KJPR.2018.31.5.478
  45. Snezhkina, A.V., A.V. Kudryavtseva, O.L. Kardymon, M.V. Savvateeva, N.V. Melnikova, G.S. Krasnov and A.A. Dmitriev. 2019. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid. Med. Cell. Longev. 2019:6175804.
  46. Westman, M., M. Korotkova, E.A. Klint, A. Stark, L.P. Audoly, L. Klareskog, A.K. Ulfgren and P.J. Jakobsson. 2004. Expression of microsomal prostaglandin E synthase 1 in rheumatoid arthritis synovium. Arthritis Rheum. 50(6):1774-1780. https://doi.org/10.1002/art.20286
  47. Yen, G.C. and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43:27-32. https://doi.org/10.1021/jf00049a007
  48. Yoon, Y.I., J.S. Hwang, M.Y. Ahn, Y.B. Lee, M.S. Han, T.W. Goo and E.Y. Yun. 2015. Inhibition of inflammation by Popillia flavosellata ethanol extract in LPS- induced RAW 264.7 macrophages. J. Life Sci. 25(9):993-999. https://doi.org/10.5352/JLS.2015.25.9.993
  49. Zhu, H.T., C. Bian, J.C. Yuan, W.H. Chu, X. Xiang, F. Chen, C.S. Wang, H. Feng and J.K. Lin. 2014. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation. 11(1):1-17. https://doi.org/10.1186/1742-2094-11-1