DOI QR코드

DOI QR Code

Anti-Inflammatory Active Polysaccharide from Postbiotics of Cordyceps militaris Mycelium-Liquid Culture

동충하초(Cordyceps militaris) 균사체 액체발효 포스트바이오틱스로부터 항염증 활성다당 분리

  • Yeon Suk, Kim (Major in Food and Nutrition, Korea National University of Transportation) ;
  • Hyun Young, Shin (Transdisciplinary Major in Learning Health System, Dept. of Integrated Biomedical & Life Science, Korea University) ;
  • Hoon, Kim (College of Biotechnology & Natural Resources, Chung-Ang University) ;
  • Eun-Jin, Jeong (Transdisciplinary Major in Learning Health System, Dept. of Integrated Biomedical & Life Science, Korea University) ;
  • Hyun-Gyeong, Kim ( Dept. of Food & Nutrition, Sookmyung Women's University) ;
  • Min Geun, Suh (Transdisciplinary Major in Learning Health System, Dept. of Integrated Biomedical & Life Science, Korea University) ;
  • Hyung Joo, Suh (Transdisciplinary Major in Learning Health System, Dept. of Integrated Biomedical & Life Science, Korea University) ;
  • Kwang-Won, Yu (Major in Food & Nutrition, Korea National University of Transportation)
  • 김연숙 (한국교통대학교 식품영양학전공) ;
  • 신현영 (고려대학교 대학원 의생명융합과학과 러닝헬스시스템융합전공 ) ;
  • 김훈 (중앙대학교 생명공학대학 ) ;
  • 정은진 (고려대학교 대학원 의생명융합과학과 러닝헬스시스템융합전공 ) ;
  • 김현경 (숙명여자대학교 식품영양학과 ) ;
  • 서민근 (고려대학교 대학원 의생명융합과학과 러닝헬스시스템융합전공 ) ;
  • 서형주 (고려대학교 대학원 의생명융합과학과 러닝헬스시스템융합전공) ;
  • 유광원 (한국교통대학교 식품영양학전공)
  • Received : 2022.11.18
  • Accepted : 2023.01.06
  • Published : 2023.02.28

Abstract

To investigate the anti-inflammatory activity of submerged culture using Cordyceps militaris mycelium, culture-including mycelia was extracted and lyophilized into postbiotics (hot-water extract; CM-HW). HW was fractionated into crude polysaccharide (CM-CP) by ethanol precipitation, and CM-CP was further dialyzed into CM-DCP by dialysis with running water using 12~14 kDa dialysis tube. When the cytotoxicity of subfractions against cells was assessed, no subfraction had a cytotoxic impact that was substantially different from the control groups. In an inflammatory model using LPS-stimulated RAW 264.7 cells, CM-DCP significantly decreased IL-6 and MCP-1 production levels compared to the LPS-control group. CM-DCP also inhibited IL-6 and IL-8 secretion in HaCaT keratinocytes stimulated with TNF-α and IFN-γ. In the meanwhile, the neutral sugar content and mannose ratio of anti-inflammatory CM-DCP were higher than the other fractions, and CM-DCP contained β-1,3/1,6-glucan of 216.1 mg/g. High pressure size exclusion chromatography revealed that CM-DCP contained molecules with a molecular weight range of 5.6 to 144.0 kDa. In conclusion, postbiotics of C. militaris mycelium significantly promoted anti-inflammatory activity, suggesting that neutral polysaccharides including Glc and Man contribute to the anti-inflammation in RAW 264.7 or HaCaT cells.

Keywords

Acknowledgement

본 논문은 2020년 전라북도 선도기업 육성사업(선도기업 기술개발 역량강화 지원사업; 과제번호 2020-나-6)으로 수행한 연구로 전북테크노파크와 (주)네오크레마에 감사드립니다.

References

  1. Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Anal Biochem 54:484-489 https://doi.org/10.1016/0003-2697(73)90377-1
  2. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 https://doi.org/10.1006/abio.1976.9999
  3. Cha JY, Ahn HY, Cho YS, Je JY. 2013. Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats. Food Chem Toxicol 60:52-57 https://doi.org/10.1016/j.fct.2013.07.033
  4. Chiu CP, Liu SC, Tang CH, Chan Y, El-Shazly M, Lee CL, Du YC, Wu TY, Chang FR, Wu YC. 2016. Anti-inflammatory cerebrosides from cultivated Cordyceps militaris. J Agric Food Chem 64:1540-1548 https://doi.org/10.1021/acs.jafc.5b05931
  5. Cho JH, Lee JY, Lee MJ, Oh HN, Kang DH, Jhune CS. 2013. Comparative analysis of useful β-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J Mushrooms 11:164-170 https://doi.org/10.14480/JM.2013.11.3.164
  6. Choi JH, Kim GS, Lee SE, Cho JH, Sung GH, Lee DY, Noh HJ. 2012. Anti-inflammatory effects of Cordyceps militaris extracts. J Mushrooms 10:249-253
  7. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39:1087-1096 https://doi.org/10.3746/jkfn.2010.39.8.1087
  8. Chou SM, Lai WJ, Hong TW, Lai JY, Tsai SH, Chen YH, Yu SH, Kao CH, Chu R, Ding ST, Li TK, Shen TL. 2014. Synergistic property of cordycepin in cultivated Cordyceps militaris-mediated apoptosis in human leukemia cells. Phytomedicine 21:1516-1524 https://doi.org/10.1016/j.phymed.2014.07.014
  9. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350-356 https://doi.org/10.1021/ac60111a017
  10. Hamidi M, Gholipour AR, Delattre C, Sesdighi F, Seveiri RM, Pasdaran A, Kheirandish S, Pierre G, Safarzadeh Kozani P, Safarzadeh Kozani P, Karimitabar F. 2020. Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 151:268-277 https://doi.org/10.1016/j.ijbiomac.2020.02.206
  11. Heo JC, Nam SH, Kang SW, Hong IP, Lee KK, Park JY, Han SY, Lee SH. 2007. Comparison of antioxidant, anticancer and immunomodulating activities of extracts from Dong-ChongXiaCao. Korean J Food Preserv 14:681-687
  12. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J. 1989. High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives. Anal Biochem 180:351-357 https://doi.org/10.1016/0003-2697(89)90444-2
  13. Jo IJ. 2022. Inhibitory activity of Terminalia chebula extract against TNF-α/IFN-γ-induced chemokine increase on human keratinocyte, HaCaT cells. Korea J Herbol 37:41-47
  14. Kang HJ, Baick SC, Yu JH. 2005. Studies on the properties of the stirred yogurt manufactured by exopolysaccharide producing lactic acid bacteria. Food Sci Anim Resour 25:84-91
  15. Kang JY, Lee B, Kim CH, Choi JH, Kim MS. 2022. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. LWT167:113830
  16. Kim DH, Park SJ, Jung JY, Kim SC, Byun SH. 2009. Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPS-activated macrophage cells. Korean J Herbol 24:39-47
  17. Kim H, Suh HJ, Shin JY, Hwang JH, Yu KW. 2016. Physiological activity of roasted coffee prepared from fermented green coffee bean with Monascus ruber mycelium. Korean J Food Nutr 29:1-11 https://doi.org/10.9799/KSFAN.2016.29.1.001
  18. Kim KH, Son D, Lee JS, Lee JW, Kim HS, Lee JH, Lee MC, Kim N, Song SW. 2013. Anti-diabetic studies of mass cultured mycelia from Ganoderma applanatum in db/db mice and human. Korean J Food Nutr 26:366-374 https://doi.org/10.9799/KSFAN.2013.26.3.366
  19. Kim MC, Kim MJ, Kim T, Park GT, Son HJ, Kim GY, Son HJ, Kim GY, Choi WB, Oh DC, Heo MS. 2006. Comparison of antibacterial and antioxidant activities of mushroom mycelium culture extracts cultivated in the citrus extracts. Korean J Bitotechnol Bioeng 21:72-78
  20. Kim SJ, Kim GH, Cho H. 2021. Postbiotics for cancer prevention and treatment. Korean J Microbiol 57:142-153 https://doi.org/10.7845/KJM.2021.1067
  21. Koh JB. 2003. Effect of liquid cultures of Cordyceps militaris on lipid metabolism and enzyme activities in hyperlipidemic female rats. J Life Sci 13:265-272 https://doi.org/10.5352/JLS.2003.13.3.265
  22. Lee JJ, Lee YM, Chang HC, Lee MY. 2007b. Acute toxicity of Leuconostoc kimchii GJ2, an exopolysaccharide-producing lactic acid bacteria isolated from kimchi, in mice. J Life Sci 17:561-567 https://doi.org/10.5352/JLS.2007.17.4.561
  23. Lee JS, Kwon DS, Lee KR, Park JM, Ha SJ, Hong EK. 2015. Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth. Carbohydr Polym 120:29-37 https://doi.org/10.1016/j.carbpol.2014.11.059
  24. Lee JY, Roh SS, Seo YB. 2007a. Research on effects of Cordyceps sinensis in spleen cells of mouse. Korean J Herbol 22:47-55
  25. Liu JY, Feng CP, Li X, Chang MC, Meng JL, Xu LJ. 2016. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int J Biol Macromol 86:594-598 https://doi.org/10.1016/j.ijbiomac.2016.02.009
  26. Liu XC, Zhu ZY, Liu YL, Sun HQ. 2019. Comparisons of the anti-tumor activity of polysaccharides from fermented mycelia and cultivated fruiting bodies of Cordyceps militaris in vitro. Int J Biol Macromol 130:307-314 https://doi.org/10.1016/j.ijbiomac.2019.02.155
  27. Liu Y, Li QZ, Li LDJ, Zhou XW. 2021. Immunostimulatory effects of the intracellular polysaccharides isolated from liquid culture of Ophiocordyceps sinensis (Ascomycetes) on RAW264.7 cells via the MAPK and PI3K/Akt signaling pathways. J Ethnopharmacol 275:114130
  28. Lopez-Garcia J, Lehocky M, Humpolicek P, Saha P. 2014. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J Funct Biomater 5:43-57 https://doi.org/10.3390/jfb5020043
  29. Park NK, Chun GT, Jeong YS. 2012. Development of extraction process of protein-bound polysaccharides from Inonotus obliquus mycelia. Korean Soc Biotechnol Bioeng J 27:177-185 https://doi.org/10.7841/ksbbj.2012.27.3.177
  30. Park YJ, Nam JY, Yoon DE, Kwon OC, Kim HI, Yoo YB, Kong WS, Lee CS. 2013. Comparison of anti-inflammatory, antioxidant and anti-allergic effects of Ganoderma species mycelial extracts. J Mushrooms 11:111-115 https://doi.org/10.14480/JM.2013.11.2.111
  31. Rathore H, Prasad S, Sharma S. 2017. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 5:35-46 https://doi.org/10.1016/j.phanu.2017.02.001
  32. Shin HY, Kim H, Jeong EJ, Kim HG, Shin JC, Choi SY, Suh HJ, Moon SK, Yu KW. 2022a. Immunostimulatory polysaccharide fractionated from a liquid culture by Phellinus linteus mycelium. J Korean Soc Food Sci Nutr 51:19-27 https://doi.org/10.3746/jkfn.2022.51.1.19
  33. Shin HY, Kim H, Jeong EJ, Kim HG, Son SU, Suh MG, Kim NR, Suh HJ, Yu KW. 2021a. Anti-inflammatory activity of liquid fermentation by Phellinus linteus mycelium. Korean J Food Nutr 34:487-497
  34. Shin HY, Kim H, Jeong EJ, Yu KW. 2022b. Macrophage stimulating activity of crude polysaccharide on maca (Lepidium meyenii) varieties. Korean J Food Nutr 35:7-15
  35. Shin HY, Kim H, Shin JY, Lee SJ, Yu KW. 2021b. The physiological activity of crude polysaccharide solvent extracted from herbal medicine mixture. Korean J Food Nutr 34:36-46
  36. Suh MG, Shin HY, Jeong EJ, Kim G, Jeong SB, Ha EJ, Choi SY, Moon SK, Yu KW, Suh HJ, Kim H. 2022. Immunostimulatory effect of postbiotics prepared from Phellinus linteus mycelial submerged culture via activation of spleen and Peyer's patch in C3H/HeN mice. Pharmaceuticals 15:1215
  37. Sun HQ, Yu XF, Li T, Zhu ZY. 2021. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. Int J Biol Macromol 166:496-508 https://doi.org/10.1016/j.ijbiomac.2020.10.207
  38. Won SY, Park EH. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 96:555-561 https://doi.org/10.1016/j.jep.2004.10.009
  39. Yoon JY, Kim JH, Baek KS, Kim GS, Lee SE, Lee DY, Choi JH, Kim SY, Park HB, Sung GH, Lee KR, Cho JY, Noh HJ 2015. A direct protein kinase B-targeted anti-inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris. Pharmacogn Mag 11:477-485 https://doi.org/10.4103/0973-1296.160454
  40. Yu Y, Wen Q, Song A, Liu Y, Wang F, Jiang B. 2022. Isolation and immune activity of a new acidic Cordyceps militaris exopolysaccharide. Int J Biol Macromol 194:706-714 https://doi.org/10.1016/j.ijbiomac.2021.11.115