DOI QR코드

DOI QR Code

Roles of ginsenosides in sepsis

  • Tao, Yu (Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University) ;
  • Yidi, Tang (Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University) ;
  • Fenglan, Zhang (Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University) ;
  • Leiming, Zhang (Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University)
  • Received : 2022.02.25
  • Accepted : 2022.05.02
  • Published : 2023.01.02

Abstract

The herbal medication Panax ginseng Meyer has widespread use in China, Korea, and other parts of the world. The main constituents of ginseng are ginsenosides, which include over 30 different triterpene saponins. It has been found that ginsenosides and their metabolites including Rg1, compound K, Rb1, Re, Rg3, and Rg5 exert anti-inflammatory activities by binding to the glucocorticoid receptor, modulating inflammation-related signaling, including NF-κB and MAPK signaling, and reducing levels of proinflammatory cytokines. Here, we review the recent literature on the molecular actions of ginsenosides in sepsis, suggesting ways in which they may be used to prevent and treat the disease.

Keywords

Acknowledgement

This work was supported by The National Natural Science Foundation of China (grant no. 81973547).

References

  1. Shankar HM, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M. Sepsis Definitions task F. Developing a new definition and assessing new clinical criteria for septic shock: for the third international Consensus Definitions for sepsis and septic shock (Sepsis3). JAMA 2016;315:775-87. https://doi.org/10.1001/jama.2016.0289
  2. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet 2018;392:75-87. https://doi.org/10.1016/S0140-6736(18)30696-2
  3. Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost 2013;39:559-66.
  4. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020;395:200-11. https://doi.org/10.1016/s0140-6736(19)32989-7
  5. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, Iwashyna TJ. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 2014;312:90-2. https://doi.org/10.1001/jama.2014.5804
  6. Xie J, Wang H, Kang Y, Zhou L, Liu Z, Qin B, Ma X, Cao X, Chen D, Lu W, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med 2020;48:e209-18. https://doi.org/10.1097/ccm.0000000000004155
  7. Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ 2019;364:k4891. https://doi.org/10.1136/bmj.k4891
  8. Strnad P, Tacke F, Koch A, Trautwein C. Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 2017;14:55-66. https://doi.org/10.1038/nrgastro.2016.168
  9. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020;395:1517-20. https://doi.org/10.1016/s0140-6736(20)30920-x
  10. Im DS. Pro-resolving effect of ginsenosides as an anti-inflammatory mechanism of Panax ginseng. Biomolecules 2020;10.
  11. Tian M, Li LN, Zheng RR, Yang L, Wang ZT. Advances on hormone-like activity of Panax ginseng and ginsenosides. Chin J Nat Med 2020;18:526-35. https://doi.org/10.1016/S1875-5364(20)30063-7
  12. Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol 2021;278:114292. https://doi.org/10.1016/j.jep.2021.114292
  13. Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 2019;20.
  14. Bhan C, Dipankar P, Chakraborty P, Sarangi PP. Role of cellular events in the pathophysiology of sepsis. Inflamm Res 2016;65:853-68. https://doi.org/10.1007/s00011-016-0970-x
  15. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta (BBA) - Mol Basis Dis 2017;1863:2564-73. https://doi.org/10.1016/j.bbadis.2017.01.013
  16. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11:373-84. https://doi.org/10.1038/ni.1863
  17. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34:637-50. https://doi.org/10.1016/j.immuni.2011.05.006
  18. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet 2005;365:63-78. https://doi.org/10.1016/S0140-6736(04)17667-8
  19. Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821-32. https://doi.org/10.1016/j.cell.2010.01.040
  20. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019;19:477-89. https://doi.org/10.1038/s41577-019-0165-0
  21. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013;38:1142-53. https://doi.org/10.1016/j.immuni.2013.05.016
  22. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 2012;109:11282-7. https://doi.org/10.1073/pnas.1117765109
  23. Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res 2019;2019:8151836. https://doi.org/10.1155/2019/8151836
  24. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017;17:407-20. https://doi.org/10.1038/nri.2017.36
  25. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013;341:1250-3. https://doi.org/10.1126/science.1240988
  26. Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X, Zhao X, Liu J, Tang C, Liu Z, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 2018;49:740-753 e7. https://doi.org/10.1016/j.immuni.2018.08.016
  27. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, Li W, Tong Q, Yi J, Zhao L, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020;55:102763. https://doi.org/10.1016/j.ebiom.2020.102763
  28. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/s0140-6736(20)30183-5
  29. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017;43:304-77. https://doi.org/10.1007/s00134-017-4683-6
  30. Opal SM. The evolution of the understanding of sepsis, infection, and the host response: a brief history. Crit Care Clin 2009;25:637-63 [vii]. https://doi.org/10.1016/j.ccc.2009.08.007
  31. Eisen DP. Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on sepsis. Intensive Care Med 2012;38:1249-57. https://doi.org/10.1007/s00134-012-2570-8
  32. Vandewalle J, Libert C. Glucocorticoids in sepsis: to Be or not to Be. Front Immunol 2020;11:1318. https://doi.org/10.3389/fimmu.2020.01318
  33. Heming N, Lamothe L, Ambrosi X, Annane D. Emerging drugs for the treatment of sepsis. Expet Opin Emerg Drugs 2016;21:27-37. https://doi.org/10.1517/14728214.2016.1132700
  34. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41:580-637. https://doi.org/10.1097/CCM.0b013e31827e83af
  35. Marik PE. The role of glucocorticoids as adjunctive treatment for sepsis in the modern era. Lancet Respir Med 2018;6:793-800. https://doi.org/10.1016/S2213-2600(18)30265-0
  36. Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, Cariou A, Forceville X, Schwebel C, Martin C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med 2018;378:809-18. https://doi.org/10.1056/NEJMoa1705716
  37. Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R, Billot L, Correa M, Glass P, Harward M, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018;378:797-808. https://doi.org/10.1056/NEJMoa1705835
  38. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013;34:518-30. https://doi.org/10.1016/j.tips.2013.07.003
  39. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med 2005;353:1711-23. https://doi.org/10.1056/NEJMra050541
  40. Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR. Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol 2002;22:7802-11. https://doi.org/10.1128/MCB.22.22.7802-7811.2002
  41. Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017;35:85-96. https://doi.org/10.1016/j.cytogfr.2017.04.002
  42. Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018;7:R328-49. https://doi.org/10.1530/EC-18-0421
  43. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. Xi. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-61. https://doi.org/10.1248/cpb.11.759
  44. Yuan Q, Jiang YW, Ma TT, Fang QH, Pan L. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. J Inflamm 2014;11:40. https://doi.org/10.1186/s12950-014-0040-5
  45. Yu S, Zhou X, Li F, Xu C, Zheng F, Li J, Zhao H, Dai Y, Liu S, Feng Y. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 2017;7:138. https://doi.org/10.1038/s41598-017-00262-0
  46. Joh EH, Lee IA, Jung IH, Kim DH. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-the key step of inflammation. Biochem Pharmacol 2011;82:278-86. https://doi.org/10.1016/j.bcp.2011.05.003
  47. Shaukat A, Guo YF, Jiang K, Zhao G, Wu H, Zhang T, Yang Y, Guo S, Yang C, Zahoor A, et al. Ginsenoside Rb1 ameliorates Staphylococcus aureus-induced Acute Lung Injury through attenuating NF-kappaB and MAPK activation. Microb Pathog 2019;132:302-12. https://doi.org/10.1016/j.micpath.2019.05.003
  48. Wu LL, Jia BH, Sun J, Chen JX, Liu ZY, Liu Y. Protective effects of ginsenoside Rb1 on septic rats and its mechanism. Biomed Environ Sci 2014;27:300-3. https://doi.org/10.3967/bes2014.053
  49. Hua F, Shi L, Zhou P. Phytochemicals as potential IKK-beta inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2020;28:83-93. https://doi.org/10.1007/s10787-019-00640-2
  50. Lee IA, Hyam SR, Jang SE, Han MJ, Kim DH. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J Agric Food Chem 2012;60:9595-602. https://doi.org/10.1021/jf301372g
  51. Quan HY, Jin XY, Cui EJ, Zhang Q. Lipopolysaccharide-induced inflammation is inhibited by ginsenoside Re through NF-kappa B signaling in RAW264.7 cells and primary rat hepatocytes. Lat Am J Pharm 2019;38:1969-78.
  52. Chen RC, Wang J, Yang L, Sun GB, Sun XB. Protective effects of ginsenoside Re on lipopolysaccharide-induced cardiac dysfunction in mice. Food Funct 2016;7:2278-87. https://doi.org/10.1039/C5FO01357G
  53. Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-kappaB/c-Fos pathways. J Ginseng Res 2018;42:476-84. https://doi.org/10.1016/j.jgr.2017.05.005
  54. Ryu S-J, Choi J, Lee J-S, Choi H-S, Yoon K-Y, Hwang J-H, Kim K, Lee B-Y. Compound K inhibits the lipopolysaccharide-induced inflammatory responses in raw 264.7 cell line and zebrafish. Appl Sci 2018;8.
  55. Liu Y, Perumalsamy H, Kang CH, Kim SH, Hwang JS, Koh SC, Yi TH, Kim YJ. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages. Artif Cell Nanomed Biotechnol 2020;48:777-88. https://doi.org/10.1080/21691401.2020.1748639
  56. Yang CS, Ko SR, Cho BG, Shin DM, Yuk JM, Li S, Kim JM, Evans RM, Jung JS, Song DK, et al. The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxin-induced lethal shock. J Cell Mol Med 2008;12:1739-53. https://doi.org/10.1111/j.1582-4934.2007.00181.x
  57. Nguyen TLL, Huynh DTN, Jin Y, Jeon H, Heo KS. Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway. Arch Pharm Res (Seoul) 2021;44:241-52. https://doi.org/10.1007/s12272-020-01304-4
  58. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 2004;133:113-20. https://doi.org/10.1159/000076383
  59. Jung JS, Kim DH, Kim HS. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-gamma-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem Biophys Res Commun 2010;397:323-8. https://doi.org/10.1016/j.bbrc.2010.05.117
  60. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  61. Li J, Du J, Liu D, Cheng B, Fang F, Weng L, Wang C, Ling C. Ginsenoside Rh1 potentiates dexamethasone's anti-inflammatory effects for chronic inflammatory disease by reversing dexamethasone-induced resistance. Arthritis Res Ther 2014;16:R106. https://doi.org/10.1186/ar4556
  62. Lee W, Cho SH, Kim JE, Lee C, Lee JH, Baek MC, Song GY, Bae JS. Suppressive effects of ginsenoside Rh1 on HMGB1-mediated septic responses. Am J Chin Med 2019;47:119-33. https://doi.org/10.1142/S0192415X1950006X
  63. Hsieh YH, Deng JS, Chang YS, Huang GJ. Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/ Akt/mTOR, raf-1/MEK/ERK, and keap1/nrf2/HO-1 signaling pathways in mice. Nutrients 2018;10.
  64. Baatar D, Siddiqi MZ, Im WT, Ul Khaliq N, Hwang SG. Anti-inflammatory effect of ginsenoside Rh2-mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Med Food 2018;21:951-60. https://doi.org/10.1089/jmf.2018.4180
  65. Fu BD, Bi WY, He CL, Zhu W, Shen HQ, Yi PF, Wang L, Wang DC, Wei XB. Sulfated derivatives of 20(S)-ginsenoside Rh2 and their inhibitory effects on LPS-induced inflammatory cytokines and mediators. Fitoterapia 2013;84:303-7. https://doi.org/10.1016/j.fitote.2012.12.021
  66. Bi WY, Fu BD, Shen HQ, Wei Q, Zhang C, Song Z, Qin QQ, Li HP, Lv S, Wu SC, et al. Sulfated derivative of 20(S)-ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NF-kappa B pathways in LPS-induced RAW264.7 macrophages. Inflammation 2012;35:1659-68. https://doi.org/10.1007/s10753-012-9482-1
  67. Zou Y, Tao T, Tian Y, Zhu J, Cao L, Deng X, Li J. Ginsenoside Rg1 improves survival in a murine model of polymicrobial sepsis by suppressing the inflammatory response and apoptosis of lymphocytes. J Surg Res 2013;183:760-6. https://doi.org/10.1016/j.jss.2013.01.068
  68. Ning C, Gao X, Wang C, Huo X, Liu Z, Sun H, Yang X, Sun P, Ma X, Meng Q, et al. Protective effects of ginsenoside Rg1 against lipopolysaccharide/dgalactosamine-induced acute liver injury in mice through inhibiting toll-like receptor 4 signaling pathway. Int Immunopharm 2018;61:266-76. https://doi.org/10.1016/j.intimp.2018.06.008
  69. Wang QL, Yang L, Peng Y, Gao M, Yang MS, Xing W, Xiao XZ. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediat Inflamm 2019;2019:6453296. https://doi.org/10.1155/2019/6453296
  70. Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 2020;121:2994-3004. https://doi.org/10.1002/jcb.29556
  71. Song Y, Zhao F, Zhang L, Du Y, Wang T, Fu F. Ginsenoside Rg1 exerts synergistic anti-inflammatory effects with low doses of glucocorticoids in vitro. Fitoterapia 2013;91:173-9. https://doi.org/10.1016/j.fitote.2013.09.001
  72. Du J, Cheng B, Zhu X, Ling C. Ginsenoside Rg1, a novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects. J Immunol 2011;187:942-50. https://doi.org/10.4049/jimmunol.1002579
  73. Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharm 2012;12:110-6. https://doi.org/10.1016/j.intimp.2011.10.023
  74. Kim JE, Lee W, Yang S, Cho SH, Baek MC, Song GY, Bae JS. Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem Toxicol 2019;124:45-53. https://doi.org/10.1016/j.fct.2018.11.057
  75. Shin YM, Jung HJ, Choi WY, Lim CJ. Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 2013;40:269-79. https://doi.org/10.1007/s11033-012-2058-1
  76. Yoon SJ, Park JY, Choi S, Lee JB, Jung H, Kim TD, Yoon SR, Choi I, Shim S, Park YJ. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015;463:1184-9. https://doi.org/10.1016/j.bbrc.2015.06.080
  77. Shi Y, Wang H, Zheng M, Xu W, Yang Y, Shi F. Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly. Faseb J 2020;34:208-21. https://doi.org/10.1096/fj.201901537r
  78. Xin C, Kim J, Quan H, Yin M, Jeong S, Choi JI, Jang EA, Lee CH, Kim DH, Bae HB. Ginsenoside Rg3 promotes Fc gamma receptor-mediated phagocytosis of bacteria by macrophages via an extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent mechanism. Int Immunopharm 2019;77:105945. https://doi.org/10.1016/j.intimp.2019.105945
  79. Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013;21:381-90. https://doi.org/10.4062/biomolther.2013.053
  80. Xing W, Yang L, Peng Y, Wang Q, Gao M, Yang M, Xiao X. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Biosci Rep 2017;37.
  81. Yang J, Li S, Wang L, Du F, Zhou X, Song Q, Zhao J, Fang R. Ginsenoside Rg3 attenuates lipopolysaccharide-induced acute lung injury via MerTKdependent activation of the PI3K/AKT/mTOR pathway. Front Pharmacol 2018;9:850. https://doi.org/10.3389/fphar.2018.00850
  82. Beltran-Garcia J, Osca-Verdegal R, Pallardo FV, Ferreres J, Rodriguez M, Mulet S, Sanchis-Gomar F, Carbonell N, Garcia-Gimenez JL. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of antioxidant therapy in avoiding disease progression. Antioxidants 2020;9.
  83. Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y, Li R, Jiang H, Yang Z, Chung SK, et al. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res 2021;172:105820. https://doi.org/10.1016/j.phrs.2021.105820
  84. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Hlh Across Speciality Collaboration Uk. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4. https://doi.org/10.1016/s0140-6736(20)30628-0
  85. Park HH, Kim HN, Kim H, Yoo Y, Shin H, Choi EY, Bae JS, Lee W. Acetylated K676 TGFBIp as a severity diagnostic blood biomarker for SARS-CoV-2 pneumonia. Sci Adv 2020;6.
  86. Park HH, Kim H, Lee HS, Seo EU, Kim JE, Lee JH, Mun YH, Yoo SY, An J, Yun MY, et al. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials 2021;273:120827. https://doi.org/10.1016/j.biomaterials.2021.120827
  87. Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2 cells via the AMPK/NF-kappaB pathway. Internet J Endocrinol 2019;2019:7514802.
  88. Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 2010;86:211-8. https://doi.org/10.1093/cvr/cvq076
  89. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3. https://doi.org/10.1038/s41586-020-2012-7
  90. Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity 2020;52:731-3. https://doi.org/10.1016/j.immuni.2020.04.003
  91. Divani AA, Andalib S, Di Napoli M, Lattanzi S, Hussain MS, Biller J, McCullough LD, Azarpazhooh MR, Seletska A, Mayer SA, et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis 2020;29:104941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
  92. Vignon P, Laterre PF, Daix T, Francois B. New agents in development for sepsis: any reason for hope? Drugs 2020;80:1751-61. https://doi.org/10.1007/s40265-020-01402-z
  93. Ren JL, Zhang AH, Wang XJ. Corrigendum to "traditional Chinese medicine for COVID-19 treatment" [pharmacol. Res. 155 (2020) 104743]. Pharmacol Res 2020;155:104768.
  94. Yu XQ, Robbie GJ, Wu Y, Esser MT, Jensen K, Schwartz HI, Bellamy T, Hernandez-Illas M, Jafri HS. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob Agents Chemother 2017;61.
  95. Ali SO, Yu XQ, Robbie GJ, Wu Y, Shoemaker K, Yu L, DiGiandomenico A, Keller AE, Anude C, Hernandez-Illas M, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect 2019;25:629e1-e6. https://doi.org/10.1016/j.cmi.2018.08.004
  96. Vincent JL, Francois B, Zabolotskikh I, Daga MK, Lascarrou JB, Kirov MY, Pettila V, Wittebole X, Meziani F, Mercier E, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA 2019;321:1993-2002. https://doi.org/10.1001/jama.2019.5358
  97. Geven C, Blet A, Kox M, Hartmann O, Scigalla P, Zimmermann J, Marx G, Laterre PF, Mebazaa A, Pickkers P. A double-blind, placebo-controlled, randomised, multicentre, proof-of-concept and dose-finding phase II clinical trial to investigate the safety, tolerability and efficacy of adrecizumab in patients with septic shock and elevated adrenomedullin concentration (AdrenOSS-2). BMJ Open 2019;9:e024475. https://doi.org/10.1136/bmjopen-2018-024475
  98. Leentjens J, Kox M, Koch RM, Preijers F, Joosten LA, van der Hoeven JG, Netea MG, Pickkers P. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med 2012;186:838-45. https://doi.org/10.1164/rccm.201204-0645OC
  99. Francois B, Wittebole X, Ferrer R, Mira J-P, Dugernier T, Gibot S, Derive M, Olivier A, Cuvier V, Witte S, et al. Nangibotide in patients with septic shock: a Phase 2a randomized controlled clinical trial. Intensive Care Med 2020;46:1425-37. https://doi.org/10.1007/s00134-020-06109-z
  100. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, Monneret G, Rimmele T, Blood T, Morre M, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight 2018;3.