DOI QR코드

DOI QR Code

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin, Lin (School of Life Science, National Taiwan Normal University) ;
  • Yu-Shao, Hsieh (Department of Chemistry, National Taiwan Normal University) ;
  • Ying-Chieh, Sun (Department of Chemistry, National Taiwan Normal University) ;
  • Wun-Han, Huang (School of Life Science, National Taiwan Normal University) ;
  • Shu-Ling, Chen (School of Life Science, National Taiwan Normal University) ;
  • Zheng-Kui, Weng (School of Life Science, National Taiwan Normal University) ;
  • Te-Hsien, Lin (School of Life Science, National Taiwan Normal University) ;
  • Yih-Ru, Wu (Department of Neurology, Chang Gung Memorial Hospital) ;
  • Kuo-Hsuan, Chang (Department of Neurology, Chang Gung Memorial Hospital) ;
  • Hei-Jen, Huang (Department of Nursing, Mackay Junior College of Medicine, Nursing and Management) ;
  • Guan-Chiun, Lee (School of Life Science, National Taiwan Normal University) ;
  • Hsiu Mei, Hsieh-Li (School of Life Science, National Taiwan Normal University) ;
  • Guey-Jen, Lee-Chen (School of Life Science, National Taiwan Normal University)
  • Received : 2022.03.11
  • Accepted : 2022.05.24
  • Published : 2023.01.01

Abstract

Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

Keywords

Acknowledgement

We thank the Molecular Imaging Core Facility of National Taiwan Normal University for the technical assistance. This work was supported by the grants 103-2321-B-182-008, 103-2321-B-003-003, 104-2325-B-003-001 and 104-2325- B-003-003 from the Ministry of Science and Technology, and 104T3040B05 and 104T3040B07 from National Taiwan Normal University, Taipei, Taiwan.

References

  1. Alabed, Y. Z., Pool, M., Ong Tone, S., Sutherland, C. and Fournier, A. E. (2010) GSK3β regulates myelin-dependent axon outgrowth inhibition through CRMP4. J. Neurosci. 30, 5635-5643. https://doi.org/10.1523/JNEUROSCI.6154-09.2010
  2. Chiu, Y. J., Hsieh, Y. H., Lin, T. H., Lee, G. C., Hsieh-Li, H. M., Sun, Y. C., Chen, C. M., Chang, K. H. and Lee-Chen, G. J. (2019) Novel compound VB-037 inhibits Aβ aggregation and promotes neurite outgrowth through enhancement of HSP27 and reduction of P38 and JNK-mediated inflammation in cell models for Alzheimer's disease. Neurochem. Int. 125, 175-186. https://doi.org/10.1016/j.neuint.2019.01.021
  3. Croft, C. L., Kurbatskaya, K., Hanger, D. P. and Noble, W. (2017) Inhibition of glycogen synthase kinase-3 by BTA-EG4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer's disease. Sci. Rep. 7, 7434.
  4. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. https://doi.org/10.1038/378785a0
  5. Cross, D. A., Culbert, A. A., Chalmers, K. A., Facci, L., Skaper, S. D. and Reith, A. D. (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94-102. https://doi.org/10.1046/j.1471-4159.2001.00251.x
  6. del Ser, T., Steinwachs, K. C., Gertz, H. J., Andres, M. V., GomezCarrillo, B., Medina, M., Vericat, J. A., Redondo, P., Fleet, D. and Leon, T. (2013) Treatment of Alzheimer's disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimers Dis. 33, 205-215.
  7. Eldar-Finkelman, H. and Martinez, A. (2011) GSK-3 Inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci. 4, 32.
  8. Fiorentini, A., Rosi, M. C., Grossi, C., Luccarini, I. and Casamenti, F. (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS ONE 5, e14382.
  9. Fukunaga, K., Sakai, D., Watanabe, K., Nakayama, K., Kohara, T., Tanaka, H., Sunada, S., Nabeno, M., Okamoto, M., Saito, K.I., Eguchi, J. I., Mori, A., Tanaka, S., Inazawa, K. and Horikawa, T. (2015) Discovery of novel 2-(alkylmorpholin-4-yl)-6-(3-fluoropyridin-4-yl)-pyrimidin-4(3H)-ones as orally-active GSK-3β inhibitors for Alzheimer's disease. Bioorg. Med. Chem. Lett. 25, 1086-1091. https://doi.org/10.1016/j.bmcl.2015.01.005
  10. Fukunaga, K., Uehara, F., Aritomo, K., Shoda, A., Hiki, S., Okuyama, M., Usui, Y., Watanabe, K., Yamakoshi, K., Kohara, T., Hanano, T., Tanaka, H., Tsuchiya, S., Sunada, S., Saito, K. I., Eguchi, J. I., Yuki, S., Asano, S., Tanaka, S., Mori, A., Yamagami, K., Baba, H., Horikawa, T. and Fujimura, M. (2013) 2-(2-Phenylmorpholin-4-yl) pyrimidin-4(3H)-ones, a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett. 23, 6933-6937. https://doi.org/10.1016/j.bmcl.2013.09.020
  11. Gao, C., Liu, Y., Jiang, Y., Ding, J. and Li, L. (2014) Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced alzheimer rat model. Brain Pathol. 24, 261-269. https://doi.org/10.1111/bpa.12116
  12. Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 65, 391-426. https://doi.org/10.1016/S0301-0082(01)00011-9
  13. Hampel, H., Ewers, M., Burger, K., Annas, P., Mortberg, A., Bogstedt, A., Frolich, L., Schroder, J., Schonknecht, P., Riepe, M. W., Kraft, I., Gasser, T., Leyhe, T., Moller, H. J., Kurz, A. and Basun, H. (2009) Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70, 922-931. https://doi.org/10.4088/JCP.08m04606
  14. Hardy, J. (2006) A hundred years of Alzheimer's disease research. Neuron 52, 3-13. https://doi.org/10.1016/j.neuron.2006.09.016
  15. Hernandez, F., Borrell, J., Guaza, C., Avila, J. and Lucas, J. J. (2002) Spatial learning deficit in transgenic mice that conditionally overexpress GSK-3beta in the brain but do not form tau filaments. J. Neurochem. 83, 1529-1533. https://doi.org/10.1046/j.1471-4159.2002.01269.x
  16. Hitchcock, S. A. and Pennington, L. D. (2006) Structure - brain exposure relationships. J. Med. Chem. 49, 7559-7583. https://doi.org/10.1021/jm060642i
  17. Hur, E. M. and Zhou, F. Q. (2010) GSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539-551. https://doi.org/10.1038/nrn2870
  18. Inbar, P., Li, C. Q., Takayama, S. A., Bautista, M. R. and Yang, J. (2006) Oligo(ethylene glycol) derivatives of thioflavin T as inhibitors of protein-amyloid interactions. ChemBioChem 7, 1563-1566. https://doi.org/10.1002/cbic.200600119
  19. Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X. Y., He, F., Xu, J. and Wang, H. Q. (2016) Quercetin protects against Okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS ONE 11, e0152371.
  20. Khlistunova, I., Biernat, J., Wang, Y., Pickhardt, M., von Bergen, M., Gazova, Z., Mandelkow, E. and Mandelkow, E. M. (2006) Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem. 281, 1205-1214. https://doi.org/10.1074/jbc.M507753200
  21. Kim, W. Y., Wang, X., Wu, Y., Doble, B. W., Patel, S., Woodgett, J. R. and Snider. W. D. (2009) GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci. 12, 1390-1397. https://doi.org/10.1038/nn.2408
  22. Lauretti, E. and Pratico, D. (2015) Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell 14, 1067-1074. https://doi.org/10.1111/acel.12381
  23. Lauretti, E., Dincer, O. and Pratico, D. (2020) Glycogen synthase kinase-3 signaling in Alzheimer's disease. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118664.
  24. Lee, C. W., Lau, K. F., Miller, C. C. and Shaw, P. C. (2003) Glycogen synthase kinase-3β-mediated tau phosphorylation in cultured cell lines. Neuroreport 14, 257-260. https://doi.org/10.1097/00001756-200302100-00020
  25. Leroy, A., Landrieu, I., Huvent, I., Legrand, D., Codeville, B., Wieruszeski, J. M. and Lippens, G. (2010) Spectroscopic studies of GSK3β phosphorylation of the neuronal tau protein and its interaction with the N-terminal domain of apolipoprotein E. J. Biol. Chem. 285, 33435-33444. https://doi.org/10.1074/jbc.M110.149419
  26. Leyhe, T., Eschweiler, G. W., Stransky, E., Gasser, T., Annas, P., Basun, H. and Laske, C. (2009) Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis. 16, 649-656. https://doi.org/10.3233/JAD-2009-1004
  27. Li, M., Wang, X., Meintzer, M. K., Laessig, T., Birnbaum, M. J. and Heidenreich, K. A. (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol. 20, 9356-9363. https://doi.org/10.1128/MCB.20.24.9356-9363.2000
  28. Li, T. and Paudel, H. K. (2006) Glycogen synthase kinase 3β phosphorylates Alzheimer's disease-specific Ser396 of microtubuleassociated protein tau by a sequential mechanism. Biochemistry 45, 3125-3133. https://doi.org/10.1021/bi051634r
  29. Lin, C. H., Hsieh, Y. S., Wu, Y. R., Hsu, C. J., Chen, H. C., Huang, W. H., Chang, K. H., Hsieh-Li, H. M., Su, M. T., Sun, Y. C., Lee G. C. and Lee-Chen, G. J. (2016) Identifying GSK-3β kinase inhibitors of Alzheimer's disease: virtual screening, enzyme, and cell assays. Eur. J. Pharm. Sci. 89, 11-19. https://doi.org/10.1016/j.ejps.2016.04.012
  30. Lin, Y. T., Cheng, J. T., Liang, L. C., Ko, C. Y., Lo, Y. K. and Lu, P. J. (2007) The binding and phosphorylation of Thr231 is critical for Tau's hyperphosphorylation and functional regulation by glycogen synthase kinase 3β. J. Neurochem. 103, 802-813. https://doi.org/10.1111/j.1471-4159.2007.04792.x
  31. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, D. P. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  32. Liu, H., Wang, L., Lv, M., Pei, R., Li, P., Pei, Z., Wang, Y., Su, W. and Xie, X. Q. (2014) AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J. Chem. Inf. Model. 54, 1050-1060. https://doi.org/10.1021/ci500004h
  33. Liu, S. J., Zhang, A. H., Li, H. L., Wang, Q., Deng, H. M., Netzer, W. J., Xu, H. and Wang, J. Z. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem. 87, 1333-1344. https://doi.org/10.1046/j.1471-4159.2003.02070.x
  34. Long, Z. M., Zhao, L., Jiang, R., Wang, K. J., Luo, S. F., Zheng, M., Li, X. F. and He, G. Q. (2015) Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer's disease model. CNS Neurosci. Ther. 21, 887-897. https://doi.org/10.1111/cns.12445
  35. Lovestone, S., Boada, M., Dubois, B., Hull, M., Rinne, J. O., Huppertz, H. J., Calero, M., Andres, M. V., Gomez-Carrillo, B., Leon, T. and del Ser, T.; ARGO investigators (2015) A phase II trial of tideglusib in Alzheimer's disease. J. Alzheimers Dis. 45, 75-88. https://doi.org/10.3233/JAD-141959
  36. Lu, J., Maezawa, I., Weerasekara, S., Erenler, R., Nguyen, T. D. T., Nguyen, J., Swisher, L. Z., Li, J., Jin, L. W., Ranjan, A., Srivastava, S. K. and Hua, D. H. (2014) Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3β of substituted quinolines. Bioorg. Med. Chem. Lett. 24, 3392-3397. https://doi.org/10.1016/j.bmcl.2014.05.085
  37. Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. and Avila, J. (2001) Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20, 27-39. https://doi.org/10.1093/emboj/20.1.27
  38. Maguschak, K. A. and Ressler, K. J. (2008) β-catenin is required for memory consolidation. Nat. Neurosci. 11, 1319-1326. https://doi.org/10.1038/nn.2198
  39. Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M. L., Yardin, C. and Terro, F. (2013) Tau protein kinases: involvement in Alzheimer's disease. Ageing Res. Rev. 12, 289-309. https://doi.org/10.1016/j.arr.2012.06.003
  40. Murase, S., Mosser, E. and Schuman, E. M. (2002) Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91-105. https://doi.org/10.1016/S0896-6273(02)00764-X
  41. Nemoto, T., Miyazaki, S., Kanai, T., Maruta, T., Satoh, S., Yoshikawa, N., Yanagita, T. and Wada, A. (2010) Nav1.7-Ca2+ influx-induced increased phosphorylations of extracellular signal-regulated kinase (ERK) and p38 attenuate tau phosphorylation via glycogen synthase kinase-3beta: priming of Nav1.7 gating by ERK and p38. Eur. J. Pharmacol. 640, 20-28. https://doi.org/10.1016/j.ejphar.2010.04.048
  42. Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman, F., Gaynor, K., Wang, L., LaFrancois, J., Feinstein, B., Burns, M., Krishnamurthy, P., Wen, Y., Bhat, R., Lewis, J., Dickson, D. and Duff, K. (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 6990-6995. https://doi.org/10.1073/pnas.0500466102
  43. Pei, J. J., Tanaka, T., Tung, Y. C., Braak, E., Iqbal, K. and GrundkeIqbal, I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70-78. https://doi.org/10.1097/00005072-199701000-00007
  44. Pei, J. J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B. and Cowburn, R. F. (1999) Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 58, 1010-1019. https://doi.org/10.1097/00005072-199909000-00011
  45. Perola, E. (2006) Minimizing false positives in kinase virtual screens. Proteins 64, 422-435. https://doi.org/10.1002/prot.21002
  46. Ploia, C., Antoniou, X., Sclip, A., Grande, V., Cardinetti, D., Colombo, A., Canu, N., Benussi, L., Ghidoni, R., Forloni, G. and Borsello, T. (2011) JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models. J. Alzheimers Dis. 26, 315-329. https://doi.org/10.3233/JAD-2011-110320
  47. Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T. and Mufson, E. J. (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501-1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
  48. Seira, O., Gavin, R., Gil, V., Llorens, F., Rangel, A., Soriano, E. and del Rio, J. A. (2010) Neurites regrowth of cortical neurons by GSK3β inhibition independently of Nogo receptor 1. J. Neurochem. 113, 1644-1658. https://doi.org/10.1111/j.1471-4159.2010.06726.x
  49. Shi, X. L., Yan, N., Cui, Y. J. and Liu, Z. P. (2020) A unique GSK-3β inhibitor B10 has a direct effect on Aβ, targets Tau and metal dyshomeostasis, and promotes neuronal neurite outgrowth. Cells 9, 649.
  50. Soutar, M. P., Kim, W. Y., Williamson, R., Peggie, M., Hastie, C. J., McLauchlan, H., Snider, W. D., Gordon-Weeks, P. R. and Sutherland, C. (2010) Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain. J. Neurochem. 115, 974-983. https://doi.org/10.1111/j.1471-4159.2010.06988.x
  51. Su, Y., Ryder, J., Li, B., Wu, X., Fox, N., Solenberg, P., Brune, K., Paul, S., Zhou, Y., Liu, F. and Ni, B. (2004) Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 43, 6899-6908. https://doi.org/10.1021/bi035627j
  52. Uemura, K., Kuzuya, A., Shimozono, Y., Aoyagi, N., Ando, K., Shimohama, S. and Kinoshita, A. (2007) GSK3βactivity modifies the localization and function of presenilin. J. Biol. Chem. 282, 15823-15832. https://doi.org/10.1074/jbc.M610708200
  53. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. and Taylor, R. D. (2003) Improved protein-ligand docking using GOLD. Proteins 52, 609-623. https://doi.org/10.1002/prot.10465
  54. Woodgett, J. R. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431-2438. https://doi.org/10.1002/j.1460-2075.1990.tb07419.x
  55. Xu, G. G., Deng, Y. Q., Liu, S. J., Li, H. L. and Wang, J. Z. (2005) Prolonged Alzheimer-like tau hyperphosphorylation induced by simultaneous inhibition of phosphoinositol-3 kinase and protein kinase C in N2a cells. Acta Biochim. Biophys. Sin. 37, 349-354. https://doi.org/10.1111/j.1745-7270.2005.00050.x
  56. Xu, M., Wang, S. L., Zhu, L., Wu, P. Y., Dai, W. B. and Rakesh, K. P. (2019) Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: a critical review. Eur. J. Med. Chem. 164, 448-470. https://doi.org/10.1016/j.ejmech.2018.12.073
  57. Zhang, Z., Hartmann, H., Do, V. M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., van de Wetering, M., Clevers, H., Saftig, P., De Strooper, B., He, X. and Yankner, B. A. (1998) Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698-702. https://doi.org/10.1038/27208
  58. Zhang, H. C., Bonaga, L. V. R., Ye, H., Derian, C. K., Damiano, B. P. and Maryanoff, B. E. (2007) Novel bis(indolyl)maleimide pyridinophanes that are potent, selective inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem. Lett. 17, 2863-2868. https://doi.org/10.1016/j.bmcl.2007.02.059