Acknowledgement
We thank the Molecular Imaging Core Facility of National Taiwan Normal University for the technical assistance. This work was supported by the grants 103-2321-B-182-008, 103-2321-B-003-003, 104-2325-B-003-001 and 104-2325- B-003-003 from the Ministry of Science and Technology, and 104T3040B05 and 104T3040B07 from National Taiwan Normal University, Taipei, Taiwan.
References
- Alabed, Y. Z., Pool, M., Ong Tone, S., Sutherland, C. and Fournier, A. E. (2010) GSK3β regulates myelin-dependent axon outgrowth inhibition through CRMP4. J. Neurosci. 30, 5635-5643. https://doi.org/10.1523/JNEUROSCI.6154-09.2010
- Chiu, Y. J., Hsieh, Y. H., Lin, T. H., Lee, G. C., Hsieh-Li, H. M., Sun, Y. C., Chen, C. M., Chang, K. H. and Lee-Chen, G. J. (2019) Novel compound VB-037 inhibits Aβ aggregation and promotes neurite outgrowth through enhancement of HSP27 and reduction of P38 and JNK-mediated inflammation in cell models for Alzheimer's disease. Neurochem. Int. 125, 175-186. https://doi.org/10.1016/j.neuint.2019.01.021
- Croft, C. L., Kurbatskaya, K., Hanger, D. P. and Noble, W. (2017) Inhibition of glycogen synthase kinase-3 by BTA-EG4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer's disease. Sci. Rep. 7, 7434.
- Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. https://doi.org/10.1038/378785a0
- Cross, D. A., Culbert, A. A., Chalmers, K. A., Facci, L., Skaper, S. D. and Reith, A. D. (2001) Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death. J. Neurochem. 77, 94-102. https://doi.org/10.1046/j.1471-4159.2001.00251.x
- del Ser, T., Steinwachs, K. C., Gertz, H. J., Andres, M. V., GomezCarrillo, B., Medina, M., Vericat, J. A., Redondo, P., Fleet, D. and Leon, T. (2013) Treatment of Alzheimer's disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimers Dis. 33, 205-215.
- Eldar-Finkelman, H. and Martinez, A. (2011) GSK-3 Inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci. 4, 32.
- Fiorentini, A., Rosi, M. C., Grossi, C., Luccarini, I. and Casamenti, F. (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS ONE 5, e14382.
- Fukunaga, K., Sakai, D., Watanabe, K., Nakayama, K., Kohara, T., Tanaka, H., Sunada, S., Nabeno, M., Okamoto, M., Saito, K.I., Eguchi, J. I., Mori, A., Tanaka, S., Inazawa, K. and Horikawa, T. (2015) Discovery of novel 2-(alkylmorpholin-4-yl)-6-(3-fluoropyridin-4-yl)-pyrimidin-4(3H)-ones as orally-active GSK-3β inhibitors for Alzheimer's disease. Bioorg. Med. Chem. Lett. 25, 1086-1091. https://doi.org/10.1016/j.bmcl.2015.01.005
- Fukunaga, K., Uehara, F., Aritomo, K., Shoda, A., Hiki, S., Okuyama, M., Usui, Y., Watanabe, K., Yamakoshi, K., Kohara, T., Hanano, T., Tanaka, H., Tsuchiya, S., Sunada, S., Saito, K. I., Eguchi, J. I., Yuki, S., Asano, S., Tanaka, S., Mori, A., Yamagami, K., Baba, H., Horikawa, T. and Fujimura, M. (2013) 2-(2-Phenylmorpholin-4-yl) pyrimidin-4(3H)-ones, a new class of potent, selective and orally active glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett. 23, 6933-6937. https://doi.org/10.1016/j.bmcl.2013.09.020
- Gao, C., Liu, Y., Jiang, Y., Ding, J. and Li, L. (2014) Geniposide ameliorates learning memory deficits, reduces tau phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced alzheimer rat model. Brain Pathol. 24, 261-269. https://doi.org/10.1111/bpa.12116
- Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 65, 391-426. https://doi.org/10.1016/S0301-0082(01)00011-9
- Hampel, H., Ewers, M., Burger, K., Annas, P., Mortberg, A., Bogstedt, A., Frolich, L., Schroder, J., Schonknecht, P., Riepe, M. W., Kraft, I., Gasser, T., Leyhe, T., Moller, H. J., Kurz, A. and Basun, H. (2009) Lithium trial in Alzheimer's disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J. Clin. Psychiatry 70, 922-931. https://doi.org/10.4088/JCP.08m04606
- Hardy, J. (2006) A hundred years of Alzheimer's disease research. Neuron 52, 3-13. https://doi.org/10.1016/j.neuron.2006.09.016
- Hernandez, F., Borrell, J., Guaza, C., Avila, J. and Lucas, J. J. (2002) Spatial learning deficit in transgenic mice that conditionally overexpress GSK-3beta in the brain but do not form tau filaments. J. Neurochem. 83, 1529-1533. https://doi.org/10.1046/j.1471-4159.2002.01269.x
- Hitchcock, S. A. and Pennington, L. D. (2006) Structure - brain exposure relationships. J. Med. Chem. 49, 7559-7583. https://doi.org/10.1021/jm060642i
- Hur, E. M. and Zhou, F. Q. (2010) GSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539-551. https://doi.org/10.1038/nrn2870
- Inbar, P., Li, C. Q., Takayama, S. A., Bautista, M. R. and Yang, J. (2006) Oligo(ethylene glycol) derivatives of thioflavin T as inhibitors of protein-amyloid interactions. ChemBioChem 7, 1563-1566. https://doi.org/10.1002/cbic.200600119
- Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X. Y., He, F., Xu, J. and Wang, H. Q. (2016) Quercetin protects against Okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS ONE 11, e0152371.
- Khlistunova, I., Biernat, J., Wang, Y., Pickhardt, M., von Bergen, M., Gazova, Z., Mandelkow, E. and Mandelkow, E. M. (2006) Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J. Biol. Chem. 281, 1205-1214. https://doi.org/10.1074/jbc.M507753200
- Kim, W. Y., Wang, X., Wu, Y., Doble, B. W., Patel, S., Woodgett, J. R. and Snider. W. D. (2009) GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci. 12, 1390-1397. https://doi.org/10.1038/nn.2408
- Lauretti, E. and Pratico, D. (2015) Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell 14, 1067-1074. https://doi.org/10.1111/acel.12381
- Lauretti, E., Dincer, O. and Pratico, D. (2020) Glycogen synthase kinase-3 signaling in Alzheimer's disease. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118664.
- Lee, C. W., Lau, K. F., Miller, C. C. and Shaw, P. C. (2003) Glycogen synthase kinase-3β-mediated tau phosphorylation in cultured cell lines. Neuroreport 14, 257-260. https://doi.org/10.1097/00001756-200302100-00020
- Leroy, A., Landrieu, I., Huvent, I., Legrand, D., Codeville, B., Wieruszeski, J. M. and Lippens, G. (2010) Spectroscopic studies of GSK3β phosphorylation of the neuronal tau protein and its interaction with the N-terminal domain of apolipoprotein E. J. Biol. Chem. 285, 33435-33444. https://doi.org/10.1074/jbc.M110.149419
- Leyhe, T., Eschweiler, G. W., Stransky, E., Gasser, T., Annas, P., Basun, H. and Laske, C. (2009) Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis. 16, 649-656. https://doi.org/10.3233/JAD-2009-1004
- Li, M., Wang, X., Meintzer, M. K., Laessig, T., Birnbaum, M. J. and Heidenreich, K. A. (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol. 20, 9356-9363. https://doi.org/10.1128/MCB.20.24.9356-9363.2000
- Li, T. and Paudel, H. K. (2006) Glycogen synthase kinase 3β phosphorylates Alzheimer's disease-specific Ser396 of microtubuleassociated protein tau by a sequential mechanism. Biochemistry 45, 3125-3133. https://doi.org/10.1021/bi051634r
- Lin, C. H., Hsieh, Y. S., Wu, Y. R., Hsu, C. J., Chen, H. C., Huang, W. H., Chang, K. H., Hsieh-Li, H. M., Su, M. T., Sun, Y. C., Lee G. C. and Lee-Chen, G. J. (2016) Identifying GSK-3β kinase inhibitors of Alzheimer's disease: virtual screening, enzyme, and cell assays. Eur. J. Pharm. Sci. 89, 11-19. https://doi.org/10.1016/j.ejps.2016.04.012
- Lin, Y. T., Cheng, J. T., Liang, L. C., Ko, C. Y., Lo, Y. K. and Lu, P. J. (2007) The binding and phosphorylation of Thr231 is critical for Tau's hyperphosphorylation and functional regulation by glycogen synthase kinase 3β. J. Neurochem. 103, 802-813. https://doi.org/10.1111/j.1471-4159.2007.04792.x
- Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, D. P. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
- Liu, H., Wang, L., Lv, M., Pei, R., Li, P., Pei, Z., Wang, Y., Su, W. and Xie, X. Q. (2014) AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J. Chem. Inf. Model. 54, 1050-1060. https://doi.org/10.1021/ci500004h
- Liu, S. J., Zhang, A. H., Li, H. L., Wang, Q., Deng, H. M., Netzer, W. J., Xu, H. and Wang, J. Z. (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J. Neurochem. 87, 1333-1344. https://doi.org/10.1046/j.1471-4159.2003.02070.x
- Long, Z. M., Zhao, L., Jiang, R., Wang, K. J., Luo, S. F., Zheng, M., Li, X. F. and He, G. Q. (2015) Valproic acid modifies synaptic structure and accelerates neurite outgrowth via the glycogen synthase kinase-3β signaling pathway in an Alzheimer's disease model. CNS Neurosci. Ther. 21, 887-897. https://doi.org/10.1111/cns.12445
- Lovestone, S., Boada, M., Dubois, B., Hull, M., Rinne, J. O., Huppertz, H. J., Calero, M., Andres, M. V., Gomez-Carrillo, B., Leon, T. and del Ser, T.; ARGO investigators (2015) A phase II trial of tideglusib in Alzheimer's disease. J. Alzheimers Dis. 45, 75-88. https://doi.org/10.3233/JAD-141959
- Lu, J., Maezawa, I., Weerasekara, S., Erenler, R., Nguyen, T. D. T., Nguyen, J., Swisher, L. Z., Li, J., Jin, L. W., Ranjan, A., Srivastava, S. K. and Hua, D. H. (2014) Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3β of substituted quinolines. Bioorg. Med. Chem. Lett. 24, 3392-3397. https://doi.org/10.1016/j.bmcl.2014.05.085
- Lucas, J. J., Hernandez, F., Gomez-Ramos, P., Moran, M. A., Hen, R. and Avila, J. (2001) Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 20, 27-39. https://doi.org/10.1093/emboj/20.1.27
- Maguschak, K. A. and Ressler, K. J. (2008) β-catenin is required for memory consolidation. Nat. Neurosci. 11, 1319-1326. https://doi.org/10.1038/nn.2198
- Martin, L., Latypova, X., Wilson, C. M., Magnaudeix, A., Perrin, M. L., Yardin, C. and Terro, F. (2013) Tau protein kinases: involvement in Alzheimer's disease. Ageing Res. Rev. 12, 289-309. https://doi.org/10.1016/j.arr.2012.06.003
- Murase, S., Mosser, E. and Schuman, E. M. (2002) Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91-105. https://doi.org/10.1016/S0896-6273(02)00764-X
- Nemoto, T., Miyazaki, S., Kanai, T., Maruta, T., Satoh, S., Yoshikawa, N., Yanagita, T. and Wada, A. (2010) Nav1.7-Ca2+ influx-induced increased phosphorylations of extracellular signal-regulated kinase (ERK) and p38 attenuate tau phosphorylation via glycogen synthase kinase-3beta: priming of Nav1.7 gating by ERK and p38. Eur. J. Pharmacol. 640, 20-28. https://doi.org/10.1016/j.ejphar.2010.04.048
- Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman, F., Gaynor, K., Wang, L., LaFrancois, J., Feinstein, B., Burns, M., Krishnamurthy, P., Wen, Y., Bhat, R., Lewis, J., Dickson, D. and Duff, K. (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. U.S.A. 102, 6990-6995. https://doi.org/10.1073/pnas.0500466102
- Pei, J. J., Tanaka, T., Tung, Y. C., Braak, E., Iqbal, K. and GrundkeIqbal, I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70-78. https://doi.org/10.1097/00005072-199701000-00007
- Pei, J. J., Braak, E., Braak, H., Grundke-Iqbal, I., Iqbal, K., Winblad, B. and Cowburn, R. F. (1999) Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J. Neuropathol. Exp. Neurol. 58, 1010-1019. https://doi.org/10.1097/00005072-199909000-00011
- Perola, E. (2006) Minimizing false positives in kinase virtual screens. Proteins 64, 422-435. https://doi.org/10.1002/prot.21002
- Ploia, C., Antoniou, X., Sclip, A., Grande, V., Cardinetti, D., Colombo, A., Canu, N., Benussi, L., Ghidoni, R., Forloni, G. and Borsello, T. (2011) JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models. J. Alzheimers Dis. 26, 315-329. https://doi.org/10.3233/JAD-2011-110320
- Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T. and Mufson, E. J. (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501-1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
- Seira, O., Gavin, R., Gil, V., Llorens, F., Rangel, A., Soriano, E. and del Rio, J. A. (2010) Neurites regrowth of cortical neurons by GSK3β inhibition independently of Nogo receptor 1. J. Neurochem. 113, 1644-1658. https://doi.org/10.1111/j.1471-4159.2010.06726.x
- Shi, X. L., Yan, N., Cui, Y. J. and Liu, Z. P. (2020) A unique GSK-3β inhibitor B10 has a direct effect on Aβ, targets Tau and metal dyshomeostasis, and promotes neuronal neurite outgrowth. Cells 9, 649.
- Soutar, M. P., Kim, W. Y., Williamson, R., Peggie, M., Hastie, C. J., McLauchlan, H., Snider, W. D., Gordon-Weeks, P. R. and Sutherland, C. (2010) Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain. J. Neurochem. 115, 974-983. https://doi.org/10.1111/j.1471-4159.2010.06988.x
- Su, Y., Ryder, J., Li, B., Wu, X., Fox, N., Solenberg, P., Brune, K., Paul, S., Zhou, Y., Liu, F. and Ni, B. (2004) Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 43, 6899-6908. https://doi.org/10.1021/bi035627j
- Uemura, K., Kuzuya, A., Shimozono, Y., Aoyagi, N., Ando, K., Shimohama, S. and Kinoshita, A. (2007) GSK3βactivity modifies the localization and function of presenilin. J. Biol. Chem. 282, 15823-15832. https://doi.org/10.1074/jbc.M610708200
- Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. and Taylor, R. D. (2003) Improved protein-ligand docking using GOLD. Proteins 52, 609-623. https://doi.org/10.1002/prot.10465
- Woodgett, J. R. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9, 2431-2438. https://doi.org/10.1002/j.1460-2075.1990.tb07419.x
- Xu, G. G., Deng, Y. Q., Liu, S. J., Li, H. L. and Wang, J. Z. (2005) Prolonged Alzheimer-like tau hyperphosphorylation induced by simultaneous inhibition of phosphoinositol-3 kinase and protein kinase C in N2a cells. Acta Biochim. Biophys. Sin. 37, 349-354. https://doi.org/10.1111/j.1745-7270.2005.00050.x
- Xu, M., Wang, S. L., Zhu, L., Wu, P. Y., Dai, W. B. and Rakesh, K. P. (2019) Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: a critical review. Eur. J. Med. Chem. 164, 448-470. https://doi.org/10.1016/j.ejmech.2018.12.073
- Zhang, Z., Hartmann, H., Do, V. M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., van de Wetering, M., Clevers, H., Saftig, P., De Strooper, B., He, X. and Yankner, B. A. (1998) Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698-702. https://doi.org/10.1038/27208
- Zhang, H. C., Bonaga, L. V. R., Ye, H., Derian, C. K., Damiano, B. P. and Maryanoff, B. E. (2007) Novel bis(indolyl)maleimide pyridinophanes that are potent, selective inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem. Lett. 17, 2863-2868. https://doi.org/10.1016/j.bmcl.2007.02.059