Acknowledgement
This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1051265) and the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07044648). We would like to thank the Aging Tissue Bank (http://grscicoll.org/institution/aging-tissue-bank) for providing research information.
References
- Alves-Fernandes, D. K. and Jasiulionis, M. G. (2019) The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int. J. Mol. Sci. 20, 3153. https://doi.org/10.3390/ijms20133153
- Ashkenazi, A. (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325-331. https://doi.org/10.1016/j.cytogfr.2008.04.001
- Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. and Strasser, A. (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25, 104-113. https://doi.org/10.1038/cdd.2017.169
- Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., Xie, Y., Wang, Z., Zhong, M. and Wei, L. (2014) High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep. 4, 7481. https://doi.org/10.1038/srep07481
- Chrun, E. S., Modolo, F. and Daniel, F. I. (2017) Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract. 213, 1329-1339. https://doi.org/10.1016/j.prp.2017.06.013
- Cory, S. and Adams, J. M. (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647-656. https://doi.org/10.1038/nrc883
- Dhanasekaran, D. N. and Reddy, E. P. (2008) JNK signaling in apoptosis. Oncogene 27, 6245-6251. https://doi.org/10.1038/onc.2008.301
- Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
- Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 37, 719-727. https://doi.org/10.1111/j.1745-7270.2005.00108.x
- Fulda, S. (2015) Targeting apoptosis for anticancer therapy. Semin. Cancer Biol. 31, 84-88. https://doi.org/10.1016/j.semcancer.2014.05.002
- Gerschenson, L. and Rotello, R. (1992) Apoptosis: a different type of cell death. FASEB J. 6, 2450-2455. https://doi.org/10.1096/fasebj.6.7.1563596
- Ghosh, A., Sengupta, A., Seerapu, G. P. K., Nakhi, A., Ramarao, E. V. S., Bung, N., Bulusu, G., Pal, M. and Haldar, D. (2017) A novel SIRT1 inhibitor, 4bb induces apoptosis in HCT116 human colon carcinoma cells partially by activating p53. Biochem. Biophys. Res. Commun. 488, 562-569. https://doi.org/10.1016/j.bbrc.2017.05.089
- Gottlieb, T. M. and Oren, M. (1998) p53 and apoptosis. Semin. Cancer Biol. 8, 359-368. https://doi.org/10.1006/scbi.1998.0098
- Halasa, M., Adamczuk, K., Adamczuk, G., Afshan, S., Stepulak, A., Cybulski, M. and Wawruszak, A. (2021) Deacetylation of transcription factors in carcinogenesis. Int. J. Mol. Sci. 22, 11810. https://doi.org/10.3390/ijms222111810
- Hwang, N. L., Kang, Y. J., Sung, B., Hwang, S. Y., Jang, J. Y., Oh, H. J., Ahn, Y. R., Kim, D. H., Kim, S. J., Ullah, S., Hossain, M. A., Moon, H. R., Chung, H. Y. and Kim, N. D. (2017) MHY451 induces cell cycle arrest and apoptosis by ROS generation in HCT116 human colorectal cancer cells. Oncol. Rep. 38, 1783-1789. https://doi.org/10.3892/or.2017.5836
- Jang, J. Y., Kang, Y. J., Sung, B., Kim, M. J., Park, C., Kang, D., Moon, H. R., Chung, H. Y. and Kim, N. D. (2019) MHY440, a novel topoisomerase Ι inhibitor, induces cell cycle arrest and apoptosis via a ROS-dependent DNA damage signaling pathway in AGS human gastric cancer cells. Molecules 24, 96. https://doi.org/10.3390/molecules24010096
- Jing, L. and Anning, L. (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15, 36-42. https://doi.org/10.1038/sj.cr.7290262
- Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., Yeatman, T., Coppola, D. and Chen, J. (2009) SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem. 284, 18210-18217. https://doi.org/10.1074/jbc.M109.000034
- Kang, Y. J., Jang, J. Y., Kwon, Y. H., Lee, J. H., Lee, S., Park, Y., Jung, Y. S., Im, E., Moon, H. R., Chung, H. Y. and Kim, N. D. (2022) MHY2245, a sirtuin inhibitor, induces cell cycle arrest and apoptosis in HCT116 human colorectal cancer cells. Int. J. Mol. Sci. 23, 1590. https://doi.org/10.3390/ijms23031590
- Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Kim, S. H., Kang, Y. J., Sung, B., Kim, D. H., Lim, H. S., Kim, H. R., Kim, S. J., Yoon, J. H., Moon, H. R., Chung, H. Y. and Kim, N. D. (2015) MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, mediates oxidative stress-induced apoptosis in AGS human gastric cancer cells. Oncol. Rep. 34, 288-294. https://doi.org/10.3892/or.2015.3984
- Lee, W. Y., Lee, W. T., Cheng, C. H., Chen, K. C., Chou, C. M., Chung, C. H., Sun, M. S., Cheng, H. W., Ho, M. N. and Lin, C. W. (2015) Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget 6, 27580. https://doi.org/10.18632/oncotarget.4768
- Li, D. (2018) Recent advances in colorectal cancer screening. Chronic Dis. Transl. Med. 4, 139-147.
- Li, X. L., Zhou, J., Chen, Z. R. and Chng, W. J. (2015) p53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 21, 84-93. https://doi.org/10.3748/wjg.v21.i1.84
- Liu, H. and Cheng, X. H. (2018) MiR-29b reverses oxaliplatin-resistance in colorectal cancer by targeting SIRT1. Oncotarget 9, 12304-12315. https://doi.org/10.18632/oncotarget.24380
- Lv, L., Shen, Z., Zhang, J., Zhang, H., Dong, J., Yan, Y., Liu, F., Jiang, K., Ye, Y. and Wang, S. (2014) Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma. Med. Oncol. 31, 965. https://doi.org/10.1007/s12032-014-0965-9
- Mariadason, J. M. (2008) HDACs and HDAC inhibitors in colon cancer. Epigenetics 3, 28-37. https://doi.org/10.4161/epi.3.1.5736
- O'Brien, M. A. and Kirby, R. (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J. Vet. Emerg. Crit. Care 18, 572-585. https://doi.org/10.1111/j.1476-4431.2008.00363.x
- Ocker, M. (2010) Deacetylase inhibitors - focus on non-histone targets and effects. World J. Biol. Chem. 1, 55-61. https://doi.org/10.4331/wjbc.v1.i5.55
- Park, H. S., Hwang, H. J., Kim, G. Y., Cha, H. J., Kim, W. J., Kim, N. D., Yoo, Y. H. and Choi, Y. H. (2013) Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Mar. Drugs 11, 2347-2364. https://doi.org/10.3390/md11072347
- Park, H. S., Kim, G. Y., Nam, T. J., Kim, N. D. and Choi, H. Y. (2011) Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J. Food Sci. 76, T77-T83. https://doi.org/10.1111/j.1750-3841.2011.02099.x
- Saelens, X., Festjens, N., Walle, L. V., Van Gurp, M., Van Loo, G. and Vandenabeele, P. (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874. https://doi.org/10.1038/sj.onc.1207523
- Shabason, J. E. and Camphausen, K. (2010) HDAC inhibitors in cancer care. Oncology 24, 180-185.
- Solomon, J. M., Pasupuleti, R., Xu, L., McDonagh, T., Curtis, R., DiStefano, P. S. and Huber, L. J. (2006) Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28-38. https://doi.org/10.1128/MCB.26.1.28-38.2006
- Tae, I. H., Son, J. Y., Lee, S. H., Ahn, M. Y., Yoon, K., Yoon, S., Moon, H. R. and Kim, H. S. (2020) A new SIRT1 inhibitor, MHY2245, induces autophagy and inhibits energy metabolism via PKM2/mTOR pathway in human ovarian cancer cells. Int. J. Biol. Sci. 16, 1901-1916. https://doi.org/10.7150/ijbs.44343
- van der Veer, E., Ho, C., O'Neil, C., Barbosa, N., Scott, R., Cregan, S. P. and Pickering, J. G. (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282, 10841-10845. https://doi.org/10.1074/jbc.C700018200
- Wan, M.-l., Wang, Y., Zeng, Z., Deng, B., Zhu, B.-s., Cao, T., Li, Y.-k., Xiao, J., Han, Q. and Wu, Q. (2020) Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci. Rep. 40, BSR20200265. https://doi.org/10.1042/bsr20200265
- Wachter, F., Grunert, M., Blaj, C., Weinstock, D. M., Jeremias, I. and Ehrhardt, H. (2013) Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling. Cell Commun. Signal. 11, 27. https://doi.org/10.1186/1478-811X-11-27
- Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87. https://doi.org/10.1186/1756-9966-30-87
- Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082-2104. https://doi.org/10.1002/med.21574
- Yang, Y., Zhang, Y., Wang, L. and Lee, S. (2017) Levistolide A induces apoptosis via ROS-mediated ER stress pathway in colon cancer cells. Cell Physiol. Biochem. 42, 929-938. https://doi.org/10.1159/000478647
- Yue, J. and Lopez, J. M. (2020) Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 21, 2346. https://doi.org/10.3390/ijms21072346
- Zhang, D., Zhou, Q., Huang, D., He, L., Zhang, H., Hu, B., Peng, H. and Ren, D. (2019) ROS/JNK/c-Jun axis is involved in oridonininduced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 513, 594-601. https://doi.org/10.1016/j.bbrc.2019.04.011
- Zhu, G., Pan, C., Bei, J. X., Li, B., Liang, C., Xu, Y. and Fu, X. (2020) Mutant p53 in cancer progression and targeted therapies. Font. Oncol. 10, 595187. https://doi.org/10.3389/fonc.2020.595187