DOI QR코드

DOI QR Code

MS-5, a Naphthalene Derivative, Induces Apoptosis in Human Pancreatic Cancer BxPC-3 Cells by Modulating Reactive Oxygen Species

  • Suman, Giri (Department of Pharmacy, Daegu Catholic University) ;
  • Gyu Hwan, Park (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Joon-Seok, Choi (Department of Pharmacy, Daegu Catholic University) ;
  • Eunsook, Ma (Department of Pharmacy, Daegu Catholic University) ;
  • Kyung-Soo, Chun (College of Pharmacy, Keimyung University) ;
  • Sang Hoon, Joo (Department of Pharmacy, Daegu Catholic University)
  • Received : 2022.09.30
  • Accepted : 2022.10.17
  • Published : 2023.01.01

Abstract

Pancreatic cancer is one of the most fatal cancers with a poor prognosis. Standard chemotherapies have proven largely ineffective because of their toxicity and the development of resistance. Therefore, there is an urgent need to develop novel therapies. In this study, we investigated the antitumor activity of MS-5, a naphthalene derivative, on BxPC-3, a human pancreatic cancer cell line. We observed that MS-5 was cytotoxic to BxPC-3 cells, as well as inhibited the growth of cells in a concentration- and time- dependent manner. Flow cytometry analysis revealed that the percentage of annexin V-positive cells increased after MS-5 treatment. We also observed cleavage of caspases and poly (ADP-ribose) polymerase, and downregulation of Bcl-xL protein. Flow cytometry analysis of intracellular levels of reactive oxygen species (ROS) and mitochondrial superoxide suggested that MS-5 induced the generation of mitochondrial superoxide while lowering the overall intracellular ROS levels. Thus, MS-5 may be potential candidate for pancreatic cancer treatment.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1A02018536; 2021R1I1A3058531 to SJ and 2020R1l1A3066367 to KC).

References

  1. Ali, H., Pamarthy, R., Vallabhaneni, M., Sarfraz, S., Ali, H. and Rafique, H. (2021) Pancreatic cancer incidence trends in the United States from 2000-2017: analysis of Surveillance, Epidemiology and End Results (SEER) database. F1000Res. 10, 529. https://doi.org/10.12688/f1000research.54390.1
  2. Bilinski, T., Litwinska, J., Blaszczynski, M. and Bajus, A. (1989) Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast. Biochim. Biophys. Acta 1001, 102-106. https://doi.org/10.1016/0005-2760(89)90312-3
  3. Cabiscol, E., Piulats, E., Echave, P., Herrero, E. and Ros, J. (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275, 27393-27398. https://doi.org/10.1016/S0021-9258(19)61523-1
  4. Che, M., Wang, R., Li, X., Wang, H. Y. and Zheng, X. F. S. (2016) Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21, 143-149. https://doi.org/10.1016/j.drudis.2015.10.001
  5. Chu, I., Sun, J., Arnaout, A., Kahn, H., Hanna, W., Narod, S., Sun, P., Tan, C. K., Hengst, L. and Slingerland, J. (2007) p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128, 281-294. https://doi.org/10.1016/j.cell.2006.11.049
  6. Dennery, P. A. (2000) Regulation and role of heme oxygenase in oxidative injury. Curr. Top. Cell. Regul. 36, 181-199. https://doi.org/10.1016/S0070-2137(01)80008-X
  7. Dickson, M. A. and Schwartz, G. K. (2009) Development of cell-cycle inhibitors for cancer therapy. Curr. Oncol. 16, 36-43. https://doi.org/10.3747/co.v16i2.428
  8. Durand, N. and Storz, P. (2017) Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev. Anticancer Ther. 17, 19-31. https://doi.org/10.1080/14737140.2017.1261017
  9. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  10. Gillen, S., Schuster, T., Meyer Zum Buschenfelde, C., Friess, H. and Kleeff, J. (2010) Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 7, e1000267. https://doi.org/10.1371/journal.pmed.1000267
  11. Li, W., Cao, L., Han, L., Xu, Q. and Ma, Q. (2015) Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-kappaB axis. Int. J. Oncol. 46, 2613-2620. https://doi.org/10.3892/ijo.2015.2938
  12. Liou, G. Y. and Storz, P. (2010) Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496. https://doi.org/10.3109/10715761003667554
  13. Ma, E., Jeong, S. J., Choi, J. S., Nguyen, T. H., Jeong, C. H. and Joo, S. H. (2019) MS-5, a naphthalene derivative, induces the apoptosis of an ovarian cancer cell CAOV-3 by interfering with the reactive oxygen species generation. Biomol. Ther. (Seoul) 27, 48-53. https://doi.org/10.4062/biomolther.2018.020
  14. Nishikawa, M. (2008) Reactive oxygen species in tumor metastasis. Cancer Lett. 266, 53-59. Orth, M., Metzger, P., Gerum, S., Mayerle, J., Schneider, G., Belka, C., https://doi.org/10.1016/j.canlet.2008.02.031
  15. Schnurr, M. and Lauber, K. (2019) Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat. Oncol. 14, 141. https://doi.org/10.1186/s13014-019-1345-6
  16. Park, K. H., Joo, S. H., Seo, J. H., Kim, J., Yoon, G., Jeon, Y. J., Lee, M. H., Chae, J. I., Kim, W. K. and Shim, J. H. (2022) Licochalcone H induces cell cycle arrest and apoptosis in human skin cancer cells by modulating JAK2/STAT3 signaling. Biomol. Ther. (Seoul) 30, 72-79. https://doi.org/10.4062/biomolther.2021.149
  17. Polyak, K., Kato, J. Y., Solomon, M. J., Sherr, C. J., Massague, J., Roberts, J. M. and Koff, A. (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8, 9-22. https://doi.org/10.1101/gad.8.1.9
  18. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M. and Matrisian, L. M. (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913-2921. https://doi.org/10.1158/0008-5472.CAN-14-0155
  19. Torres, M. and Forman, H. J. (2003) Redox signaling and the MAP kinase pathways. Biofactors 17, 287-296. https://doi.org/10.1002/biof.5520170128
  20. Ushio-Fukai, M. and Nakamura, Y. (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266, 37-52 https://doi.org/10.1016/j.canlet.2008.02.044