Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) of Korea (grant number NRF_2020M3E5D9080791). This paper was also supported by research funds from newly appointed professors of Jeonbuk National University in 2021.
References
- Abiero, A., Botanas, C. J., Custodio, R. J., Sayson, L. V., Kim, M., Lee, H. J., Kim, H. J., Lee, K. W., Jeong, Y., Seo, J. W., Ryu, I. S., Lee, Y. S. and Cheong, J. H. (2020) 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels. Psychopharmacology (Berl.) 237, 757-772. https://doi.org/10.1007/s00213-019-05412-y
- Autry, A., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P. F., Kavalali, E. T. and Monteggia, L. M. (2011) NMDA receptor blockade at rest triggers rapid behavioral antidepressant responses. Nature 475, 91-95. https://doi.org/10.1038/nature10130
- Ballard, E. D. and Zarate, C. A., Jr. (2020) The role of dissociation in ketamine's antidepressant effects. Nat. Commun. 11, 6431.
- Bjorkholm, C. and Monteggia, L. M. (2016) BDNF - a key transducer of antidepressant effects. Neuropharmacology 102, 72-79. https://doi.org/10.1016/j.neuropharm.2015.10.034
- Blendy, J. A. (2006) The role of CREB in depression and antidepressant treatment. Biol. Psychiatry 59, 1144-1150. https://doi.org/10.1016/j.biopsych.2005.11.003
- Botanas, C. J., Perez Custodio, R., Kim, H. J., de la Pena, J. B., Sayson, L. V., Ortiz, D. M., Kim, M. K., Lee, H. J., Acharya, S., Kim, K. M., Lee, C. J., Ryu, J. H., Lee, Y. S. and Cheong, J. H. (2021) R (-)-methoxetamine exerts rapid and sustained antidepressant effects and fewer behavioral side effects relative to S (+)-methoxetamine. Neuropharmacology 193, 108619.
- Chowdhury, G. M., Zhang, J., Thomas, M., Banasr, M., Ma, X., Pittman, B., Bristow, L., Schaeffer, E., Duman, R., Rothman, D., Behar, K. and Sanacora, G. (2017) Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol. Psychiatry 22, 120-126. https://doi.org/10.1038/mp.2016.34
- Custodio, R. J. P., Kim, M., Sayson, L. V., Lee, H. J., Ortiz, D. M., Kim, B. N., Kim, H. J. and Cheong, J. H. (2021) Low striatal T3 is implicated in inattention and memory impairment in an ADHD mouse model overexpressing thyroid hormone-responsive protein. Commun. Biol. 4, 1101.
- Divito, C. B. and Underhill, S. M. (2014) Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem. Int. 73, 172-180. https://doi.org/10.1016/j.neuint.2013.12.008
- Duman, R. S. and Aghajanian, G. K. (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68-72. https://doi.org/10.1126/science.1222939
- Gass, P. and Riva, M. A. (2007) CREB, neurogenesis, and depression. BioEssays 29, 957-961. https://doi.org/10.1002/bies.20658
- Gass, N., Becker, R., Reinwald, J., Cosa-Linan, A., Sack, M., WeberFahr, W., Vollmayr, B. and Sartorius, A. (2019) Differences between ketamine's short-term and long-term effects on brain circuitry in depression. Transl. Psychiatry 9, 172.
- Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M. and Rush, A. J. (2009) What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr. Serv. 60, 1439-1445. https://doi.org/10.1176/appi.ps.60.11.1439
- Golden, S. A., Covington, H. E., III, Berton, O. and Russo, S. J. (2011) A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183-1191. https://doi.org/10.1038/nprot.2011.361
- Gong, R., Park, C. S., Abbassi, N. R. and Tang, S. J. (2006) Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J. Biol. Chem. 281, 18802-18815. https://doi.org/10.1074/jbc.M512524200
- Hillhouse, T. M., Porter, J. H. and Negus, S. S. (2014) Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology (Berl.) 231, 2705-2716. https://doi.org/10.1007/s00213-014-3451-3
- Ignacio, Z. M., Reus, G. Z., Arent, C. O., Abelaira, H. M., Pitcher, M. R. and Quevedo, J. (2016) New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs. Br. J. Clin. Pharmacol. 82, 1280-1290. https://doi.org/10.1111/bcp.12845
- Jelen, L. A., Young, A. H. and Stone, J. M. (2021) Ketamine: a tale of two enantiomers. J. Psychopharmacol. 35, 109-123. https://doi.org/10.1177/0269881120959644
- Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. and Altman, D. G. (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br. J. Pharmacol. 160, 1577-1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
- Kim, D. G., Gonzales, E. L., Kim, S., Kim, Y., Adil, K. J., Jeon, S. J., Cho, K. S., Kwon, K. J. and Shin, C. Y. (2019) Social interaction test in home cage as a novel and ethological measure of social behavior in mice. Exp. Neurobiol. 28, 247-260. https://doi.org/10.5607/en.2019.28.2.247
- Kishi, T., Yoshimura, R., Ikuta, T. and Iwata, N. (2018) Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses. Front. Psychiatry 8, 308.
- Koike, H., Iijima, M. and Chaki, S. (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav. Brain Res. 224, 107-111. https://doi.org/10.1016/j.bbr.2011.05.035
- Lang, U. E. and Borgwardt, S. (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell. Physiol. Biochem. 31, 761-777. https://doi.org/10.1159/000350094
- Lin, C.-L. G., Kong, Q., Cuny, G. D. and Glicksman, M. A. (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med. Chem. 4, 1689-1700. https://doi.org/10.4155/fmc.12.122
- Lipton, S. A. (2004) Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx 1, 101-110. https://doi.org/10.1602/neurorx.1.1.101
- Liu, Y., Lin, D., Wu, B. and Zhou, W. (2016) Ketamine abuse potential and use disorder. Brain Res. Bull. 126, 68-73. https://doi.org/10.1016/j.brainresbull.2016.05.016
- Miranda, M., Morici, J. F., Zanoni, M. B. and Bekinschtein, P. (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 13, 363.
- Mitrovic, V., Patyna, W., Huting, J. and Schlepper, M. (1991) Hemodynamic and neurohumoral effects of moxonidine in patients with essential hypertension. Cardiovasc. Drugs Ther. 5, 967-972. https://doi.org/10.1007/BF00143521
- Murrough, J. W., Wan, L. B., Iacoviello, B., Collins, K. A., Solon, C., Glicksberg, B., Perez, A., Mathew, S. J., Charney, D., Losifescu, D. V. and Burdick, K. E. (2014) Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology (Berl.) 231, 481-488. https://doi.org/10.1007/s00213-013-3255-x
- Nikayin, S., Murphy, E., Krystal, J. H. and Wilkinson, S. T. (2022) Longterm safety of ketamine and esketamine in treatment of depression. Expert Opin. Drug Saf. 21, 777-787. https://doi.org/10.1080/14740338.2022.2066651
- Ortiz, D. M., Custodio, R. J. P., Abiero, A., Botanas, C. J., Sayson, L. V., Kim, M., Lee, H. J., Kim, H. J., Jeong, Y., Yoon, S., Lee, Y. S. and Cheong, J. H. (2021) The dopaminergic alterations induced by 4-F-PCP and 4-Keto-PCP may enhance their drug-induced rewarding and reinforcing effects: implications for abuse. Addict. Biol. 26, e12981.
- Palucha-Poniewiera, A. and Pilc, A. (2016) Glutamate-based drug discovery for novel antidepressants. Expert Opin. Drug Discov. 11, 873-883. https://doi.org/10.1080/17460441.2016.1213234
- Papp, M. and Moryl, E. (1994) Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur. J. Pharmacol. 263, 1-7. https://doi.org/10.1016/0014-2999(94)90516-9
- Pochwat, B., Rafalo-Ulinska, A., Domin, H., Misztak, P., Nowak, G. and Szewczyk, B. (2017) Involvement of extracellular signal-regulated kinase (ERK) in the short and long-lasting antidepressant-like activity of NMDA receptor antagonists (zinc and Ro 25-6981) in the forced swim test in rats. Neuropharmacology 125, 333-342. https://doi.org/10.1016/j.neuropharm.2017.08.006
- Polis, A. J., Fitzgerald, P. J., Hale, P. J. and Watson, B. O. (2019) Rodent ketamine depression-related research: finding patterns in a literature of variability. Behav. Brain Res. 376, 112153.
- Puran, A. C., Holstege, C. P., Jamison, K. P. and Wiegand, T. J. (2014) Phencyclidine. In Encyclopedia of Toxicology, pp. 868-870.
- Elsevier. Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., Niederehe, G., Thase, M. E., Lavori, P. W., Lebowitz, B. D., McGrath, P. J., Rosenbaum, J. F., Sackeim, H. A., Kupfer, D. J., Luther, J. and Fava, M. (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163, 1905-1917. https://doi.org/10.1176/appi.ajp.163.11.1905
- Sanacora, G., Zarate, C. A., Krystal, J. H. and Manji, H. K. (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov. 7, 426-437. https://doi.org/10.1038/nrd2462
- Sayson, L. V., Botanas, C. J., Custodio, R. J. P., Abiero, A., Kim, M., Lee, H. J., Kim, H. J., Yoo, S. Y., Lee, K. W., Ryu, H. W., Acharya, S., Kim, K. M., Lee, Y. S. and Cheong, J. H. (2019) The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT2 receptors. Psychopharmacology (Berl.) 236, 2201-2210. https://doi.org/10.1007/s00213-019-05219-x
- Wang, Q. and Dwivedi, Y. (2021) Advances in novel molecular targets for antidepressants. Prog. Neuropsychopharmacol. Biol. Psychiatry 104, 110041.
- World Health Organization (2021) Suicide Worldwide in 2019: Global Health Estimates. Retrieved from: https://www.who.int/publications/i/item/9789240026643/.
- Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., Alkondon, M., Yuan, P., Pribut, H. J., Singh, N. S., Dossou, K. S., Fang, Y., Huang, X. P., Mayo, C. L., Wainer, I. W., Albuquerque, E. X., Thompson, S. M., Thomas, C. J., Zarate, C. A., Jr. and Gould, T. D. (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481-486. https://doi.org/10.1038/nature17998
- Zarate, C. A., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., Charney, D. S. and Manji, H. K. (2006) A randomized trial of an N-Methyl-D-aspartate antagonist in treatmentresistant major depression. Arch. Gen. Psychiatry 63, 856-864. https://doi.org/10.1001/archpsyc.63.8.856