DOI QR코드

DOI QR Code

NJK14047 Suppression of the p38 MAPK Ameliorates OVA-Induced Allergic Asthma during Sensitization and Challenge Periods

  • Ju-Hyun, Lee (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Seung-Hwan, Son (Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Nam-Jung, Kim (Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Dong-Soon, Im (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University)
  • 투고 : 2022.06.08
  • 심사 : 2022.08.01
  • 발행 : 2023.03.01

초록

p38 MAPK has been implicated in the pathogenesis of asthma as well as pro-allergic Th2 cytokines, orosomucoid-like protein isoform 3 (ORMDL3), regulation of sphingolipid biosynthesis, and regulatory T cell-derived IL-35. To elucidate the role of p38 MAPK in the pathogenesis of asthma, we examined the effect of NJK14047, an inhibitor of p38 MAPK, against ovalbumin (OVA)-induced allergic asthma; we administrated NJK14047 before OVA sensitization or challenge in BALB/c mice. As ORMDL3 regulation of sphingolipid biosynthesis has been implicated in childhood asthma, ORMDL3 expression and sphingolipids contents were also analyzed. NJK14047 inhibited antigen-induced degranulation of RBL-2H3 mast cells. NJK14047 administration both before OVA sensitization and challenge strongly inhibited the increase in eosinophil and lymphocyte counts in the bronchoalveolar lavage fluid. In addition, NJK14047 administration inhibited the increase in the levels of Th2 cytokines. Moreover, NJK14047 reduced the inflammatory score and the number of periodic acid-Schiff-stained cells in the lungs. Further, OVA-induced increase in the levels of C16:0 and C24:1 ceramides was not altered by NJK14047. These results suggest that p38 MAPK plays crucial roles in activation of dendritic and mast cells during sensitization and challenge periods, but not in ORMDL3 and sphingolipid biosynthesis.

키워드

과제정보

We thank the Metabolomics Core Facility at the Convergence medicine research center (CREDIT), Asan Medical Center for support and instrumentation. This research was supported by the Basic Research Laboratory Program (BRL) and the Basic Science Research Program of the Korean National Research Foundation funded by the Korean Ministry of Science, ICT, and Future Planning (NRF-2020R1A4A1016142 and NRF-2019R1A2C1005523).

참고문헌

  1. Arrighi, J.-F., Rebsamen, M., Rousset, F., Kindler, V. and Hauser, C. (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers. J. Immunol. 166, 3837-3845. https://doi.org/10.4049/jimmunol.166.6.3837
  2. Azzolina, A., Guarneri, P. and Lampiasi, N. (2002) Involvement of p38 and JNK MAPKs pathways in substance P-induced production of TNF-α by peritoneal mast cells. Cytokine 18, 72-80. https://doi.org/10.1006/cyto.2002.0879
  3. Bai, D., Sun, T., Lu, F., Shen, Y., Zhang, Y., Zhang, B., Yu, G., Li, H. and Hao, J. (2022) Eupatilin suppresses OVA-induced asthma by inhibiting NF-κB and MAPK and activating Nrf2 signaling pathways in mice. Int. J. Mol. Sci. 23, 1582.
  4. Bakakos, A., Vogli, S., Dimakou, K. and Hillas, G. (2022) Asthma with fixed airflow obstruction: from fixed to personalized approach. J. Pers. Med. 12, 333.
  5. Barnes, P. J. (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636-645. https://doi.org/10.1016/j.jaci.2012.12.1564
  6. Bhavsar, P., Hew, M., Khorasani, N., Torrego, A., Barnes, P. J., Adcock, I. and Chung, K. F. (2008) Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 63, 784-790. https://doi.org/10.1136/thx.2007.090027
  7. Boudreau, R. T., Hoskin, D. W. and Lin, T. J. (2004) Phosphatase inhibition potentiates IL-6 production by mast cells in response to FcɛRI-mediated activation: involvement of p38 MAPK. J. Leukoc. Biol. 76, 1075-1081. https://doi.org/10.1189/jlb.1003498
  8. Breslow, D. K., Collins, S. R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., Ejsing, C. S. and Weissman, J. S. (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048-1053. https://doi.org/10.1038/nature08787
  9. Chen, C.-H., Zhang, D.-H., LaPorte, J. M. and Ray, A. (2000) Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J. Immunol. 165, 5597-5605. https://doi.org/10.4049/jimmunol.165.10.5597
  10. Chiang, C.-Y., Chang, J.-H., Chuang, H.-C., Fan, C.-K., Hou, T.-Y., Lin, C.-L. and Lee, Y.-L. (2022) Schisandrin B promotes Foxp3+ regulatory T cell expansion by activating heme oxygenase-1 in dendritic cells and exhibits immunomodulatory effects in Th2-mediated allergic asthma. Eur. J. Pharmacol. 918, 174775.
  11. Collison, L. W., Chaturvedi, V., Henderson, A. L., Giacomin, P. R., Guy, C., Bankoti, J., Finkelstein, D., Forbes, K., Workman, C. J., Brown, S. A., Rehg, J. E., Jones, M. L., Ni, H. T., Artis, D., Turk, M. J. and Vignali, D. A. (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093-1101. https://doi.org/10.1038/ni.1952
  12. Debeuf, N., Zhakupova, A., Steiner, R., Van Gassen, S., Deswarte, K., Fayazpour, F., Van Moorleghem, J., Vergote, K., Pavie, B., Lemeire, K., Hammad, H., Hornemann, T., Janssens, S. and Lambrecht, B. N. (2019) The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J. Allergy Clin. Immunol. 144, 1648-1659.e9. https://doi.org/10.1016/j.jaci.2019.06.041
  13. Escott, K., Belvisi, M., Birrell, M., Webber, S., Foster, M. and Sargent, C. (2000) Effect of the p38 kinase inhibitor, SB 203580, on allergic airway inflammation in the rat. Br. J. Pharmacol. 131, 173-176. https://doi.org/10.1038/sj.bjp.0703605
  14. Gilfillan, A. M., Peavy, R. D. and Metcalfe, D. D. (2009) Amplification mechanisms for the enhancement of antigen-mediated mast cell activation. Immunol. Res. 43, 15-24. https://doi.org/10.1007/s12026-008-8046-9
  15. Ha, S. G., Ge, X. N., Bahaie, N. S., Kang, B. N., Rao, A., Rao, S. P. and Sriramarao, P. (2013) ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat. Commun. 4, 2479.
  16. Hale, K. K., Trollinger, D., Rihanek, M. and Manthey, C. L. (1999) Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ, and δ in inflammatory cell lineages. J. Immunol. 162, 4246-4252. https://doi.org/10.4049/jimmunol.162.7.4246
  17. Heo, J., Shin, H., Lee, J., Kim, T., Inn, K.-S. and Kim, N.-J. (2015) Synthesis and biological evaluation of N-cyclopropylbenzamidebenzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors. Bioorg. Med. Chem. Lett. 25, 3694-3698. https://doi.org/10.1016/j.bmcl.2015.06.036
  18. Jarnicki, A. G., Conroy, H., Brereton, C., Donnelly, G., Toomey, D., Walsh, K., Sweeney, C., Leavy, O., Fletcher, J., Lavelle, E. C., Dunne, P. and Mills, K. H. (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J. Immunol. 180, 3797-3806. https://doi.org/10.4049/jimmunol.180.6.3797
  19. Kalesnikoff, J., Huber, M., Lam, V., Damen, J. E., Zhang, J., Siraganian, R. P. and Krystal, G. (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14, 801-811. https://doi.org/10.1016/S1074-7613(01)00159-5
  20. Kim, S. H., Jung, H. W., Kim, M., Moon, J. Y., Ban, G. Y., Kim, S. J., Yoo, H. J. and Park, H. S. (2020) Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 75, 1991-2004. https://doi.org/10.1111/all.14236
  21. Koprak, S., Staruch, M. J. and Dumont, F. J. (1999) A specific inhibitor of the p38 mitogen activated protein kinase affects differentially the production of various cytokines by activated human T cells: dependence on CD28 signaling and preferential inhibition of IL-10 production. Cell. Immunol. 192, 87-95. https://doi.org/10.1006/cimm.1998.1448
  22. Lee, J.-H. and Im, D.-S. (2021a) 4-CMTB ameliorates ovalbumininduced allergic asthma through FFA2 activation in mice. Biomol. Ther. (Seoul) 29, 427-433. https://doi.org/10.4062/biomolther.2020.176
  23. Lee, J. E. and Im, D. S. (2021b) Suppressive effect of carnosol on ovalbumin-induced allergic asthma. Biomol. Ther. (Seoul) 29, 58-63. https://doi.org/10.4062/biomolther.2020.050
  24. Li, W., Gao, R., Xin, T. and Gao, P. (2020) Different expression levels of interleukin-35 in asthma phenotypes. Respir. Res. 21, 89.
  25. Liu, W., Liang, Q., Balzar, S., Wenzel, S., Gorska, M. and Alam, R. (2008) Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. J. Allergy Clin. Immunol. 121, 893-902.e2. https://doi.org/10.1016/j.jaci.2008.02.004
  26. Lu, B., Ferrandino, A. F. and Flavell, R. A. (2004) Gadd45β is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol. 5, 38-44. https://doi.org/10.1038/ni1020
  27. Maneechotesuwan, K., Xin, Y., Ito, K., Jazrawi, E., Lee, K.-Y., Usmani, O. S., Barnes, P. J. and Adcock, I. M. (2007) Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA3. J. Immunol. 178, 2491-2498. https://doi.org/10.4049/jimmunol.178.4.2491
  28. Marzhan, K., Aidana, B. and Kh.S., O. (2022) Frequency of spread of bronchial asthma among middle-aged people and effectiveness of treatment. Almaty, City Clinical Hospital No. 1. World Science No 1(73). doi: 10.31435/rsglobal_ws/30012022/7747.
  29. Mikkelsen, S. S., Jensen, S. B., Chiliveru, S., Melchjorsen, J., Julkunen, I., Gaestel, M., Arthur, J. S. C., Flavell, R. A., Ghosh, S. and Paludan, S. R. (2009) RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells. J. Biol. Chem. 284, 10774-10782. https://doi.org/10.1074/jbc.M807272200
  30. Miller, M., Rosenthal, P., Beppu, A., Gordillo, R. and Broide, D. H. (2017) Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. J. Allergy Clin. Immunol. 139, 1373-1376.e4. https://doi.org/10.1016/j.jaci.2016.08.053
  31. Miller, M., Rosenthal, P., Beppu, A., Mueller, J. L., Hoffman, H. M., Tam, A. B., Doherty, T. A., McGeough, M. D., Pena, C. A., Suzukawa, M., Niwa, M. and Broide, D. H. (2014) ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J. Immunol. 192, 3475-3487. https://doi.org/10.4049/jimmunol.1303047
  32. Miller, M., Tam, A. B., Cho, J. Y., Doherty, T. A., Pham, A., Khorram, N., Rosenthal, P., Mueller, J. L., Hoffman, H. M., Suzukawa, M., Niwa, M. and Broide, D. H. (2012) ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc. Natl. Acad. Sci. U.S.A. 109, 16648-16653. https://doi.org/10.1073/pnas.1204151109
  33. Moffatt, M. F., Kabesch, M., Liang, L., Dixon, A. L., Strachan, D., Heath, S., Depner, M., von Berg, A., Bufe, A., Rietschel, E., Heinzmann, A., Simma, B., Frischer, T., Willis-Owen, S. A., Wong, K. C., Illig, T., Vogelberg, C., Weiland, S. K., von Mutius, E., Abecasis, G. R., Farrall, M., Gut, I. G., Lathrop, G. M. and Cookson, W. O. (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470-473. https://doi.org/10.1038/nature06014
  34. Mori, A., Kaminuma, O., Miyazawa, K., Ogawa, K., Okudaira, H. and Akiyama, K. (1999) p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis. J. Immunol. 163, 4763-4771. https://doi.org/10.4049/jimmunol.163.9.4763
  35. Nath, P., Leung, S.-Y., Williams, A., Noble, A., Chakravarty, S. D. S., Luedtke, G. R., Medicherla, S., Higgins, L. S., Protter, A. and Chung, K. F. (2006) Importance of p38 mitogen-activated protein kinase pathway in allergic airway remodelling and bronchial hyperresponsiveness. Eur. J. Pharmacol. 544, 160-167. https://doi.org/10.1016/j.ejphar.2006.06.031
  36. Ono, J. G., Kim, B. I., Zhao, Y., Christos, P. J., Tesfaigzi, Y., Worgall, T. S. and Worgall, S. (2020) Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J. Clin. Invest. 130, 921-926. https://doi.org/10.1172/jci130860
  37. Oyeniran, C., Sturgill, J. L., Hait, N. C., Huang, W. C., Avni, D., Maceyka, M., Newton, J., Allegood, J. C., Montpetit, A., Conrad, D. H., Milstien, S. and Spiegel, S. (2015) Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J. Allergy Clin. Immunol. 136, 1035-1046.e6. https://doi.org/10.1016/j.jaci.2015.02.031
  38. Park, N., Park, S. J., Kim, M. H. and Yang, W. M. (2022) Efficacy and mechanism of essential oil from Abies holophylla leaf on airway inflammation in asthma: network pharmacology and in vivo study. Phytomedicine 96, 153898.
  39. Pelaia, C., Vatrella, A., Gallelli, L., Lombardo, N., Sciacqua, A., Savino, R. and Pelaia, G. (2021) Role of p38 mitogen-activated protein kinase in asthma and COPD: pathogenic aspects and potential targeted therapies. Drug Des. Devel. Ther. 15, 1275-1284. https://doi.org/10.2147/DDDT.S300988
  40. Qian, L., Xu, D., Xue, F., Li, M., Wang, X. and Liu, G. (2020) Inter-leukin-35 sensitizes monocytes from patients with asthma to glucocorticoid therapy by regulating p38 MAPK. Exp. Ther. Med. 19, 3247-3258.
  41. Rayees, S. and Din, I. (2021) Current asthma treatments. In Asthma: Pathophysiology, Herbal and Modern Therapeutic Interventions, pp. 19-25. Springer.
  42. Saklatvala, J. (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4, 372-377. https://doi.org/10.1016/j.coph.2004.03.009
  43. Schafer, P. H., Wadsworth, S. A., Wang, L. and Siekierka, J. J. (1999) p38α mitogen-activated protein kinase is activated by CD28-mediated signaling and is required for IL-4 production by human CD4+ CD45RO+ T cells and Th2 effector cells. J. Immunol. 162, 7110-7119. https://doi.org/10.4049/jimmunol.162.12.7110
  44. Siow, D., Sunkara, M., Dunn, T. M., Morris, A. J. and Wattenberg, B. (2015) ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis. J. Lipid Res. 56, 898-908. https://doi.org/10.1194/jlr.M057539
  45. Skapenko, A., Lipsky, P. E., Kraetsch, H.-G., Kalden, J. R. and Schulze-Koops, H. (2001) Antigen-independent Th2 cell differentiation by stimulation of CD28: regulation via IL-4 gene expression and mitogen-activated protein kinase activation. J. Immunol. 166, 4283-4292. https://doi.org/10.4049/jimmunol.166.7.4283
  46. Tirpude, N. V., Sharma, A., Kumari, M. and Bhardwaj, N. (2022) Vitexin restores lung homeostasis by targeting vicious loop between inflammatory aggravation and autophagy mediated via multiple redox cascade and myeloid cells alteration in experimental allergic asthma. Phytomedicine 96, 153902.
  47. Underwood, D. C., Osborn, R. R., Kotzer, C. J., Adams, J. L., Lee, J. C., Webb, E. F., Carpenter, D. C., Bochnowicz, S., Thomas, H. C., Hay, D. W. and Griswold, D. E. (2000) SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J. Pharmacol. Exp. Ther. 293, 281-288.
  48. Wallace-Farquharson, T., Rhee, H., Duckworth, L., Elder, J. H. and Wilkie, D. J. (2022) Children's and adolescents' descriptors of asthma symptoms: an integrative review. Int. J. Nurs. Stud. Adv. 4, 100063.
  49. Wang, Y., Yu, Y., Yu, W., Bian, X. and Gong, L. (2022) IL-35 inhibits cell pyroptosis and attenuates cell injury in TNF-α-induced bronchial epithelial cells via p38 MAPK signaling pathway. Bioengineered 13, 1758-1766. https://doi.org/10.1080/21655979.2021.2022266
  50. Worgall, T. S., Veerappan, A., Sung, B., Kim, B. I., Weiner, E., Bholah, R., Silver, R. B., Jiang, X.-C. and Worgall, S. (2013) Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci. Transl. Med. 5, 167-186.
  51. Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S. and Hornemann, T. (2016) ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB J. 30, 4289-4300. https://doi.org/10.1096/fj.201600639R