DOI QR코드

DOI QR Code

Structural Insights for β-Lactam Antibiotics

  • Dogyeoung, Kim (Department of Biological Sciences, Konkuk University) ;
  • Sumin, Kim (Department of Biological Sciences, Konkuk University) ;
  • Yongdae, Kwon (Department of Biological Sciences, Konkuk University) ;
  • Yeseul, Kim (Department of Biological Sciences, Konkuk University) ;
  • Hyunjae, Park (Department of Biological Sciences, Konkuk University) ;
  • Kiwoong, Kwak (Department of Biological Sciences, Konkuk University) ;
  • Hyeonmin, Lee (Department of Biological Sciences, Konkuk University) ;
  • Jung Hun, Lee (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Kyung-Min, Jang (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Donghak, Kim (Department of Biological Sciences, Konkuk University) ;
  • Sang Hee, Lee (National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University) ;
  • Lin-Woo, Kang (Department of Biological Sciences, Konkuk University)
  • Received : 2023.01.11
  • Accepted : 2023.01.20
  • Published : 2023.03.01

Abstract

Antibiotic resistance has emerged as a global threat to modern healthcare systems and has nullified many commonly used antibiotics. β-Lactam antibiotics are among the most successful and occupy approximately two-thirds of the prescription antibiotic market. They inhibit the synthesis of the peptidoglycan layer in the bacterial cell wall by mimicking the D-Ala-D-Ala in the pentapeptide crosslinking neighboring glycan chains. To date, various β-lactam antibiotics have been developed to increase the spectrum of activity and evade drug resistance. This review emphasizes the three-dimensional structural characteristics of β-lactam antibiotics regarding the overall scaffold, working mechanism, chemical diversity, and hydrolysis mechanism by β-lactamases. The structural insight into various β-lactams will provide an in-depth understanding of the antibacterial efficacy and susceptibility to drug resistance in multidrug-resistant bacteria and help to develop better β-lactam antibiotics and inhibitors.

Keywords

Acknowledgement

This work was supported by the project 'Development of biomedical materials based on marine proteins' (Project No. 20170305) funded by the Ministry of Oceans and Fisheries, Korea (J.-H.L.). This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017M3A9E4078014 and NRF-2017M3A9E4078017).

References

  1. Bahr, G., Gonzalez, L. J. and Vila, A. J. (2021) Metallo-beta-lactamases in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem. Rev. 121, 7957-8094. https://doi.org/10.1021/acs.chemrev.1c00138
  2. Behzadi, P., Garcia-Perdomo, H. A., Karpinski, T. M. and Issakhanian, L. (2020) Metallo-ss-lactamases: a review. Mol. Biol. Rep. 47, 6281-6294. https://doi.org/10.1007/s11033-020-05651-9
  3. Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Burgmann, H., Sorum, H., Norstrom, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F. and Martinez, J. L. (2015) Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310-317. https://doi.org/10.1038/nrmicro3439
  4. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. and Piddock, L. J. (2015) Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42-51. https://doi.org/10.1038/nrmicro3380
  5. Breijyeh, Z., Jubeh, B. and Karaman, R. (2020) Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25, 1340.
  6. Bush, K. and Bradford, P. A. (2019) Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat. Rev. Microbiol. 17, 295-306. https://doi.org/10.1038/s41579-019-0159-8
  7. Chen, Y., Zhang, W., Shi, Q., Hesek, D., Lee, M., Mobashery, S. and Shoichet, B. K. (2009) Crystal structures of penicillin-binding protein 6 from Escherichia coli. J. Am. Chem. Soc. 131, 14345-14354. https://doi.org/10.1021/ja903773f
  8. Crowder, M. W., Spencer, J. and Vila, A. J. (2006) Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39, 721-728. https://doi.org/10.1021/ar0400241
  9. de Kraker, M. E., Stewardson, A. J. and Harbarth, S. (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13, e1002184.
  10. Goffin, C. and Ghuysen, J. M. (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079-1093. https://doi.org/10.1128/MMBR.62.4.1079-1093.1998
  11. Greenfield, K. G., Badovinac, V. P., Griffith, T. S. and Knoop, K. A. (2021) Sepsis, cytokine storms, and immunopathology: the divide between neonates and adults. Immunohorizons 5, 512-522.. https://doi.org/10.4049/immunohorizons.2000104
  12. Hou, C. D., Liu, J. W., Collyer, C., Mitic, N., Pedroso, M. M., Schenk, G. and Ollis, D. L. (2017) Insights into an evolutionary strategy leading to antibiotic resistance. Sci. Rep. 7, 40357.
  13. Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., Bhutta, Z. A., Coates, A., Bergstrom, R., Wright, G. D., Brown, E. D. and Cars, O. (2013) Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9
  14. Lee, J. H., Park, K. S., Karim, A. M., Lee, C. R. and Lee, S. H. (2016) How to minimise antibiotic resistance. Lancet Infect. Dis. 16, 17-18.
  15. Mancuso, G., Midiri, A., Gerace, E. and Biondo, C. (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10, 1310.
  16. Naas, T., Oueslati, S., Bonnin, R. A., Dabos, M. L., Zavala, A., Dortet, L., Retailleau, P. and Iorga, B. I. (2017) Beta-lactamase database (BLDB) - structure and function. J. Enzyme Inhib. Med. Chem. 32, 917-919. https://doi.org/10.1080/14756366.2017.1344235
  17. Ozturk, H., Ozkirimli, E. and Ozgur, A. (2015) Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 10, e0117874.
  18. Palacios, A. R., Mojica, M. F., Giannini, E., Taracila, M. A., Bethel, C. R., Alzari, P. M., Otero, L. H., Klinke, S., Llarrull, L. I., Bonomo, R. A. and Vila, A. J. (2019) The reaction mechanism of metallo-beta-lactamases is tuned by the conformation of an active-site mobile loop. Antimicrob. Agents Chemother. 63, e01754-18.
  19. Park, Y. S., Kim, T. Y., Park, H., Lee, J. H., Nguyen, D. Q., Hong, M. K., Lee, S. H. and Kang, L. W. (2020) Structural study of metal binding and coordination in ancient metallo-beta-lactamase PNGM-1 variants. Int. J. Mol. Sci. 21, 4926.
  20. Paterson, D. L., Isler, B. and Stewart, A. (2020) New treatment options for multiresistant gram negatives. Curr. Opin. Infect. Dis. 33, 214-223. https://doi.org/10.1097/QCO.0000000000000627
  21. Sauvage, E., Duez, C., Herman, R., Kerff, F., Petrella, S., Anderson, J. W., Adediran, S. A., Pratt, R. F., Frere, J. M. and Charlier, P. (2007) Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J. Mol. Biol. 371, 528-539. https://doi.org/10.1016/j.jmb.2007.05.071
  22. Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A. and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234-258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
  23. Silver, L. L. (2016) Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med. 6, a030239.
  24. Vollmer, W., Blanot, D. and de Pedro, M. A. (2008) Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149-167. https://doi.org/10.1111/j.1574-6976.2007.00094.x
  25. Yan, Y. H., Li, G. and Li, G. B. (2020) Principles and current strategies targeting metallo-beta-lactamase mediated antibacterial resistance. Med. Res. Rev. 40, 1558-1592. https://doi.org/10.1002/med.21665