DOI QR코드

DOI QR Code

피마자유기반 바이오폴리머와 골재를 혼합한 제방월류 보강제 실규모 실험연구

A Study of Real Scale Experiment on Protection Technique of Levee Overflow Failure Using Mixed Bio-Polymer and Riprap

  • 강준구 (한국건설기술연구원 수자원하천연구본부) ;
  • 안홍규 (한국건설기술연구원 수자원하천연구본부)
  • Joongu, Kang (Korea Institute of Civil Engineering and Building Technology) ;
  • Hong-Kyu, Ahn (Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.12.06
  • 심사 : 2022.12.22
  • 발행 : 2023.03.31

초록

제방은 기본적으로 물이 넘치지 않도록 하기 위하여 조성되는 구조물이다. 개발된 제방보강 기술은 바이오폴리머와 골재를 혼합하여 제방의 붕괴로 발생되는 대규모 재난을 방지하기 위한 기술로 제방의 세굴 및 붕괴 등을 억제하는데 목적이 있다. 개발된 기술은 호안 사면 등에도 활용이 가능하지만 시공성이 수월하여 월류파괴에 대한 대응 기술로 적용하기 용이하다. 개발된 기술을 현장에 적용하기 위해서는 기술의 안전성을 확보해야 하므로 현장시범사업 등 실제 적용에 대한 연구가 필요하다. 하지만 월류 파괴는 현장에서 시범사업을 수행할 수 없으므로 본 연구에서는 실규모 실험을 통해 현장 적용성 연구를 수행하였다. 실규모실험은 안동에 위치한 하천실험센터에서 수행하였으며, 인위적인 월류를 통하여 제방 세굴 및 붕괴 상황을 검토하였다. 실험결과 개발기술이 월류파괴에 대해 대응 가능하고 붕괴를 억제할 수 있는 기술로의 실증을 수행하였다.

Developmental technique is mixed bio-polymer and riprap to protect the breaking of a levee. Purpose of new technique is restraint from scour and failure of bankside. Technique of this research can apply shore protection and embankment overflow reinforcement works. Because This technique is easy for construction. In order to apply the technique in fields, It is need to conduct the test-bed or real scale experiment study for stability-guaranteed. In case of embankment overflow reinforcement works, It is difficult to conduct test bed in the field. Real scale experiment was conducted in River Experiment Center. Purpose of real scale experiment is to reappear disaster scene by embankment overflow and verify restraint from scour and failure about the technique. In this experiment results, We can find the strength effect of mixed bio-polymer and riprap.

키워드

과제정보

본 연구는 국토교통과학기술진흥원 국가연구개발사업 국토교통기술사업화지원 과제인 "피마자유 기반 바이오폴리머를 활용한 하천 호안 및 하상보호 기술의 현장적용성 강화를 위한 응용기술개발" 연구사업의 연구비 지원으로 수행되었습니다 (과제번호: RS-2021-KA160822). 이에 감사드립니다.

참고문헌

  1. Ahn, H.-K., Lee, S.-H., and Ji, M.-K. 2017. Development of Ecological Scour Protection Technique with NonToxic Materials and Examination of Field Application. International Journal of Environmental Science and Development 8: 164-167. https://doi.org/10.18178/ijesd.2017.8.3.940
  2. ASCE/EWRI Task Committee on Dam/Levee Breaching. 2011. Earthen embankment breaching. Journal of Hydraulic Engineering 137(12): 1549-1564. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000498
  3. Coleman, S. E., Andrews, D.P., and Webby, M.G. 2002. Overtopping breaching of noncohesive homogeneous embankments. Journal of Hydraulic Engineering 128(9): 829-838. https://doi.org/10.1061/(asce)0733-9429(2002)128:9(829)
  4. Danka, J. and Zhang, L.M. 2015. Dike failure mechanisms and breaching parameters. Journal of Geotechnical and Geoenvironmental Engineering 141(9): 04015039.
  5. Feliciano Cestero, J.A., Imran, J., and Chaudhry, M.H. 2015. Experimental investigation of the effects of soil properties on levee breach by overtopping. Journal of Hydraulic Engineering 141(4): 04014085.
  6. Frank, P.J. and Hager, W.H. 2015. Spatial dike breach: Sediment surface topography using photogrammetry. In E-Proceedings of the 36th IAHR World Congress, 28 June-3 July, 2015, The Hague, the Netherlands. IAHR.
  7. Fritz, H.M. and Hager, W.H. 1998. Hydraulics of embankment weirs. Journal of Hydraulic Engineering 124(9): 963-971. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(963)
  8. Hanson, G.J., Cook, K.R., and Hunt, S.L. 2005. Physical modeling of overtopping erosion and breach formation of cohesive embankments. Transactions of the ASAE 48(5): 1783-1794. https://doi.org/10.13031/2013.20012
  9. Hassan, M.A.A.M., Morris, M.A.R.K., Hanson, G., and Lakhal, K.A.R.I.M. 2004. Breach formation: Laboratory and numerical modeling of breach formation. Association of State Dam Safety Officials: Dam Safety.
  10. Kakinuma, T. and Shimizu, Y. 2014. Large-scale experiment and numerical modeling of a riverine levee breach. Journal of Hydraulic Engineering 140(9): 04014039.
  11. Kim, J.M., Cho, W.B., Choi, B.H., and Oh, E.H. 2015. Model tests for deriving failure parameter during levee overflow. Journal of the Korean Geosynthetics Society 14(2): 11-21. https://doi.org/10.12814/jkgss.2015.14.2.011
  12. Kim, J.M., Park, M.C., Moon, I.J., and Jin, Y.H. 2017. Model Tests for Examination of Overflow Failure Mechanism on River Levee. Journal of the Korean Geosynthetics Society 16(1): 41-52. https://doi.org/10.12814/jkgss.2017.16.1.041
  13. Morris, M.W., Hassan, M.A.A.M., and Vaskinn, K.A. 2007. Breach formation: Field test and laboratory experiments. Journal of Hydraulic Research 45(sup1): 9-17. https://doi.org/10.1080/00221686.2007.9521828
  14. Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El Kadi Abderrezzak, K., and Dewals, B. 2017. Overtopping induced failure of noncohesive, homogeneous fluvial dikes. Water Resources Research 53(4): 3373-3386 https://doi.org/10.1002/2016WR020053
  15. Sargison, J.E. and Percy, A. 2009. Hydraulics of broadcrested weirs with varying side slopes. Journal of Irrigation and Drainage Engineering 135(1): 115-118. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(115)
  16. Schiereck, G.J. 1998. Fundamentals on water defences. TAW-ENW report.
  17. Schmocker, L. and Hager, W.H. 2012. Plane dike-breach due to overtopping: Effects of sediment, dike height and discharge. Journal of Hydraulic Research 50(6): 576-586 https://doi.org/10.1080/00221686.2012.713034
  18. Schmocker, L., Frank, P.J., and Hager, W.H. 2014. Overtopping dike-breach: Effect of grain size distribution. Journal of Hydraulic Research 52(4): 559-564 https://doi.org/10.1080/00221686.2013.878403
  19. Visser, P.J. 1999. Breach erosion in sand-dikes. In Coastal Engineering 1998, pp. 3516-3528.
  20. Visser, P.J. 2001. A model for breach erosion in sanddikes. In Coastal Engineering 2000, pp. 3829-3842.