DOI QR코드

DOI QR Code

Vitamin C promotes the early reprogramming of fetal canine fibroblasts into induced pluripotent stem cells

  • Sang Eun Kim (Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Jun Sung Lee (Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University) ;
  • Keon Bong Oh (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jeong Ho Hwang (Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology)
  • 투고 : 2023.09.15
  • 심사 : 2023.11.07
  • 발행 : 2023.12.31

초록

Background: Canine induced pluripotent stem cells (iPSCs) are an attractive source for veterinary regenerative medicine, disease modeling, and drug development. Here we used vitamin C (Vc) to improve the reprogramming efficiency of canine iPSCs, and its functions in the reprogramming process were elucidated. Methods: Retroviral transduction of Oct4, Sox2, Klf4, c-Myc (OSKM), and GFP was employed to induce reprogramming in canine fetal fibroblasts. Following transduction, the culture medium was subsequently replaced with ESC medium containing Vc to determine the effect on reprogramming activity. Results: The number of AP-positive iPSC colonies dramatically increased in culture conditions supplemented with Vc. Vc enhanced the efficacy of retrovirus transduction, which appears to be correlated with enhanced cell proliferation capacity. To confirm the characteristics of the Vc-treated iPSCs, the cells were cultured to passage 5, and pluripotency markers including Oct4, Sox2, Nanog, and Tra-1-60 were observed by immunocytochemistry. The expression of endogenous pluripotent genes (Oct4, Nanog, Rex1, and telomerase) were also verified by PCR. The complete silencing of exogenously transduced human OSKM factors was observed exclusively in canine iPSCs treated with Vc. Canine iPSCs treated with Vc are capable of forming embryoid bodies in vitro and have spontaneously differentiated into three germ layers. Conclusions: Our findings emphasize a straightforward method for enhancing the efficiency of canine iPSC generation and provide insight into the Vc effect on the reprogramming process.

키워드

과제정보

This study was supported by 2023 the RDA Fellowship Program of National Institute of Animal Science, Rural Development Administration, Republic of Korea.

참고문헌

  1. Baird A, Barsby T, Guest DJ. 2015. Derivation of canine induced pluripotent stem cells. Reprod. Domest. Anim. 50:669-676. https://doi.org/10.1111/rda.12562
  2. Betts DH and Tobias IC. 2015. Canine pluripotent stem cells: are they ready for clinical applications? Front. Vet. Sci. 2:41.
  3. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O, Rho J, Ince TA, Daley GQ, Schlaeger TM. 2009. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27:1033-1037. https://doi.org/10.1038/nbt.1580
  4. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71-79. https://doi.org/10.1016/j.stem.2009.12.001
  5. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D. 2009. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284:17634-17640. https://doi.org/10.1074/jbc.M109.008938
  6. Goncalves NJN, Bressan FF, Roballo KCS, Meirelles FV, Xavier PLP, Fukumasu H, Williams C, Breen M, Koh S, Sper R, Piedrahita J, Ambrosio CE. 2017. Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology 92:75-82. https://doi.org/10.1016/j.theriogenology.2017.01.013
  7. Hahm E, Jin DH, Kang JS, Kim YI, Hong SW, Lee SK, Kim HN, Jung DJ, Kim JE, Shin DH, Hwang YI, Kim YS, Hur DY, Yang Y, Cho D, Lee MS, Lee WJ. 2007. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J. Cell. Biochem. 102:1002-1010. https://doi.org/10.1002/jcb.21336
  8. Hochedlinger K and Plath K. 2009. Epigenetic reprogramming and induced pluripotency. Development 136:509-523. https://doi.org/10.1242/dev.020867
  9. Hotta A and Ellis J. 2008. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell. Biochem. 105:940-948. https://doi.org/10.1002/jcb.21912
  10. Kere M, Siriboon C, Lo NW, Nguyen NT, Ju JC. 2013. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J. Reprod. Dev. 59:78-84. https://doi.org/10.1262/jrd.2012-114
  11. Kim JS, Choi HW, Choi S, Seo HG, Moon SH, Chung HM, Do JT. 2014. Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes. Stem Cells Dev. 23:2637-2648. https://doi.org/10.1089/scd.2014.0020
  12. Koh S, Thomas R, Tsai S, Bischoff S, Lim JH, Breen M, Olby NJ, Piedrahita JA. 2013. Growth requirements and chromosomal instability of induced pluripotent stem cells generated from adult canine fibroblasts. Stem Cells Dev. 22:951-963. https://doi.org/10.1089/scd.2012.0393
  13. Lee AS, Xu D, Plews JR, Nguyen PK, Nag D, Lyons JK, Han L, Hu S, Lan F, Liu J, Huang M, Narsinh KH, Long CT, de Almeida PE, Levi B, Kooreman N, Bangs C, Pacharinsak C, Ikeno F, Yeung AC, Gambhir SS, Robbins RC, Longaker MT, Wu JC. 2011. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 286:32697-32704. https://doi.org/10.1074/jbc.M111.235739
  14. Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H, Xiao L. 2009. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11-15. https://doi.org/10.1016/j.stem.2008.11.013
  15. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K, Qu X, Xiang T, Lu D, Chi X, Gao G, Ji W, Ding M, Deng H. 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587-590. https://doi.org/10.1016/j.stem.2008.10.014
  16. Nishimura T, Hatoya S, Kanegi R, Wijesekera DPH, Sanno K, Tanaka E, Sugiura K, Hiromitsu Tamada NK, Imai H, Inaba T. 2017. Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions. Mol. Reprod. Dev. 84:329-339. https://doi.org/10.1002/mrd.22789
  17. Ostrander EA, Galibert F, Patterson DF. 2000. Canine genetics comes of age. Trends Genet. 16:117-124. https://doi.org/10.1016/S0168-9525(99)01958-7
  18. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. 2003. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. 5:741-747. https://doi.org/10.1038/ncb1024
  19. Schneider MR, Wolf E, Braun J, Kolb HJ, Adler H. 2008. Canine embryo-derived stem cells and models for human diseases. Hum. Mol. Genet. 17(R1):R42-R47. https://doi.org/10.1093/hmg/ddn078
  20. Starkey MP, Scase TJ, Mellersh CS, Murphy S. 2005. Dogs really are man's best friend--canine genomics has applications in veterinary and human medicine! Brief. Funct. Genomic. Proteomic. 4:112-128. https://doi.org/10.1093/bfgp/4.2.112
  21. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  22. Takahashi K and Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  23. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:1145-1147. https://doi.org/10.1126/science.282.5391.1145
  24. Whitworth DJ, Ovchinnikov DA, Wolvetang EJ. 2012. Generation and characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev. 21:2288-2297. https://doi.org/10.1089/scd.2011.0608
  25. Xu X, Smorag L, Nakamura T, Kimura T, Dressel R, Fitzner A, Tan X, Linke M, Zechner U, Engel W, Pantakani DV. 2015. Dppa3 expression is critical for generation of fully reprogrammed iPS cells and maintenance of Dlk1-Dio3 imprinting. Nat. Commun. 6:6008.
  26. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920. https://doi.org/10.1126/science.1151526
  27. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:68.
  28. Zhang P, Li J, Qi Y, Zou Y, Liu L, Tang X, Duan J, Liu H, Zeng G. 2016. Vitamin C promotes the proliferation of human adipose-derived stem cells via p53-p21 pathway. Organogenesis 12:143-151. https://doi.org/10.1080/15476278.2016.1194148