DOI QR코드

DOI QR Code

Experimental studies of damage to aircraft skin under the influence of raindrops

  • Minggong Sha (School of Civil Aviation, Northwestern Polytechnical University) ;
  • Ying Sun (Moscow Aviation Institute) ;
  • Li Yulong (School of Civil Aviation, Northwestern Polytechnical University) ;
  • Vladimir I. Goncharenko (Moscow Aviation Institute) ;
  • Vladimir S. Oleshko (Moscow Aviation Institute) ;
  • Anatoly V. Ryapukhin (Moscow Aviation Institute) ;
  • Victor M. Yurov (Karaganda Technical University)
  • Received : 2023.12.19
  • Accepted : 2024.02.11
  • Published : 2023.11.25

Abstract

Airplanes in flight collide with raindrops, and the leading edges of the airframe can be damaged when colliding with raindrops. A single waterjet testing platform was created to study rain erosion damage. Carbon fiber samples with three types of skins were studied and the mechanical properties were measured using a nanoindentation instrument. The research results show that the impact force on the sample increases with the continuous increase in the impact speed of raindrops, which leads to an increase in the damage area. Sheathing with low surface roughness is more damaged than other sheathings due to its rougher surface, and the result proves that surface roughness has a more significant effect on rain erosion damage to sheathings compared to their hardness.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 12261131505, 11832015), Basic Research Programs of Taicang (Nos. TC2020JC30).

References

  1. Adler, W.F. (1999), "Rain impact retrospective and vision for the future", Wear, 233, 25-38. https://doi.org/10.1016/S0043-1648(99)00191-X. 
  2. Bech, J.I., Johansen, N.F.J., Madsen, M.B., Hannesdottir, A. and Hasager, C.B. (2022), "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades", Renew. Energy, 197, 776-789. https://doi.org/10.1016/j.renene.2022.06.127. 
  3. Cook, S.S. (1928), "Erosion by Water-Hammer", Proc. Roy. Soc. London, 119(783), 481-488. https://doi.org/10.1016/S0016-0032(29)91613-6. 
  4. Coto, B., Hallander, P., Mendizabal, L., Pagano, F., Kling, H., Ortiz, R., Barriga, J. and Selegard, L. (2021), "Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection", Wear, 466, 203575. https://doi.org/10.1016/j.wear.2020.203575. 
  5. Dear, J.P. and Field, J.E. (1988), "High-speed photography of surface geometry effects in liquid/solid impact", J. Appl. Phys., 63(4), 1015-1021. https://doi.org/10.1063/1.340000. 
  6. Field, J.E. (1986), "Liquid impact erosion", Phys. Bull., 37(2), 70-72. https://doi.org/10.1088/0031-9112/37/2/027. 
  7. Field, J.E., Dear, J.P. and Ogren, J.E. (1989), "The effects of target compliance on liquid drop impact", J. Appl. Phys., 65(2), 533-540. https://doi.org/10.1063/1.343136. 
  8. Gohardani, O. (2011), "Impact of erosion testing aspects on current and future flight conditions", Progr. Aerosp. Sci., 47(4), 280-303. https://doi.org/10.1016/j.paerosci.2011.04.001. 
  9. Gujba, A.K., Hackel, L., Kevorkov, D. and Medraj, M. (2016), "Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages", Wear, 358, 109-122. https://doi.org/10.1016/j.wear.2016.04.008. 
  10. Heymann, F.J. (1968), "On the shock wave velocity and impact pressure in high-speed liquid-solid impact", J. Bas. Eng., 90(3), 400-402. https://doi.org/10.1115/1.3605114. 
  11. Imeson, A.C., Vis, R. and Water, D.E. (1981), "The measurement of water-drop impact forces with a piezoelectric transducer", Catena, 8, 83-96. https://doi.org/10.1016/S0341-8162(81)80006-9. 
  12. Itoh, H. and Okabe, N. (1993), "Evaluation of erosion by liquid droplet impingement for metallic materials", Trans. JPN Soc. Mech. Eng. Part A, 59(567), 2736-2741. https://doi.org/10.1299/kikaia.59.2736. 
  13. Jenkins, D.C. (1955), "Erosion of surfaces by liquid drops", Nature, 176(4476), 303-304. https://doi.org/10.1038/176303a0. 
  14. Keegan, M.K., Nash, D.H. and Stack, M.M. (2013), "On erosion issues associated with the leading edge of wind turbine blades", J. Phys. D: Appl. Phys., 46(38), 383001. https://doi.org/10.1088/0022-3727/46/38/383001. 
  15. Kennedy, C.F. and Field, J.E. (2000), "Damage threshold velocities for liquid impact", J. Mater. Sci., 35(21), 5331-5339. https://doi.org/10.1023/A:1004842828161. 
  16. King, R.B. (1976), "Erosion by liquid impact", Aeronaut. J., 80(791), 492-493. https://doi.org/10.1017/S0001924000034552. 
  17. Lan, L.F., Xian, Y. and Fu, M.Y. (2014), Oil and Coating Testing Technology, Chemical Industry Press, Beijing, China.
  18. Li, Y. (2008), "Failure analysis of corrosion protection coating", Shanghai Coat., 46(9), 36-39. https://doi.org/10.3969/j.issn.1009-1696.2008.09.012. 
  19. Mednikov, A.F., Tkhabisimov, A.B., Filatov, A.A. and Lukyanychev, D.A. (2021), "Forecasting the service life of paint coatings under conditions simulating aircraft flight modes in a dusty atmosphere and under the influence of rain load", Materials of the VI All-Russian Scientific and Technical Conference, Moscow, Russia, May. 
  20. Mishnaevsky Jr, L. (2019), "Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: overview of mechanisms and technical solutions", Wind Energy, 22(11), 1636-1653. https://doi.org/10.1002/we.2378. 
  21. Nearing, M.A., Bradford, J.M. and Holtz, R.D. (1986), "Measurement of force vs. time relations for waterdrop impact", Soil Sci. Soc. Am. J., 50(6), 1532-1536. https://doi.org/10.2136/sssaj1986.03615995005000060030x. 
  22. Obara, T.B.N.K.F., Bourne, N.K. and Field, J.E. (1995), "Liquid-jet impact on liquid and solid surfaces", Wear, 186, 388-394. https://doi.org/10.1016/0043-1648(95)07187-3. 
  23. Richman, R.H. (2002), Liquid-Impact Erosion, ASM Handbook, Vol. 11, 1013-1018.  https://doi.org/10.31399/asm.hb.v11.a0003570
  24. Schmitt, G.F. (1974), "Materials parameters that govern the erosion behavior of polymeric composites in subsonic rain environments", ASTM International, Montgomery County, USA. 
  25. Schramm, M., Rahimi, H., Stoevesandt, B. and Tangager, K. (2017), "The influence of eroded blades on wind turbine performance using numerical simulations", Energi., 10(9), 1420. https://doi.org/10.3390/en10091420. 
  26. Shi, H.H. and Dear, J.P. (1992), "Oblique high-speed liquid-solid impact", JSME Int. J., 35(3), 285-295. https://doi.org/10.1299/jsmea1988.35.3_285. 
  27. Slot, H.M., Gelinck, E.R.M., Rentrop, C. and Van Der Heide, E. (2015), "Leading edge erosion of coated wind turbine blades: Review of coating life models", Renew. Energy, 80, 837-848. https://doi.org/10.1016/j.renene.2015.02.036. 
  28. Springer, G.S. (1974), "Analysis of rain erosion of coated materials", J. Compos. Mater., 8(3), 229-252. https://doi.org/10.1177/002199837400800302. 
  29. Tobin, E.F., Young, T.M., Raps, D. and Rohr, O. (2011), "Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities", Wear, 271(9-10), 2625-2631. https://doi.org/10.1016/j.wear.2011.02.023. 
  30. Valaker, E.A., Armada, S. and Wilson, S. (2015), "Droplet erosion protection coatings for offshore wind turbine blades", Energy Procedia, 80, 263-275. https://doi.org/10.1016/j.egypro.2015.11.430. 
  31. Ying, Y. and Xu, G.D. (2011), "Development of pitch control for load reduction on wind turbines", J. Mech. Eng., 47(16), 106-111. https://doi.org/10.3901/JME.2011.16.106. 
  32. Young, T.M. and Humphreys, B. (2001), "Fielding investigation of Hybrid Laminar Flow Control (HLFC) surfaces", Aircraft Des., 4(2/3), 127-146. https://doi.org/10.1016/S1369-8869(01)00010-6. 
  33. Zahavi, J. and Nadiv, S. (1981), "Indirect damage in composite materials due to raindrop impact", Wear, 72, 305-313. https://doi.org/10.1016/0043-1648(81)90257-X. 
  34. Zhang, S., Dam-Johansen, K., Norkjaer, S., Bernad Jr, P.L. and Kiil, S. (2015), "Erosion of wind turbine blade coatings-Design and analysis of jet-based laboratory equipment for performance evaluation", Progr. Organ. Coat., 78, 103-115. https://doi.org/10.1016/j.porgcoat.2014.09.016.