DOI QR코드

DOI QR Code

Current Issues in Wind Engineering: A Review

  • Yong Chul Kim (Department of Engineering, Tokyo Polytechnic University)
  • Published : 2023.12.29

Abstract

This paper briefly discusses current issues in wind engineering, including the enhancement of aerodynamic database and AI-assisted design, aerodynamic characteristics of tall buildings with atypical building shapes, application of computation fluid dynamics to wind engineering, evaluation of aerodynamic force coefficients based on a probabilistic method, estimation of tornadic wind speed (JEF scale) and effect of the Ekman Spiral on tall buildings.

Keywords

Acknowledgement

This research was supported by the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University (Project No. SLDRCE21-05). The authors gratefully acknowledge this support.

References

  1. Architectural Institute of Japan (2005), Guide for numerical prediction of wind loads on buildings, Architectural Institute of Japan, Maruzen, Tokyo, Japan (in Japanese).
  2. Architectural Institute of Japan (2007), Guidebook for CFD application to wind environment in urban area, Architectural Institute of Japan, Maruzen, Tokyo, Japan (in Japanese).
  3. Bandi, E.K., Tanaka, H., Kim, Y.C., Ohtake, K., Yoshida, A., and Tamura, Y. (2013), Peak pressures acting on tall buildings with various configurations, The International Journal of High-Rise Buildings, 2(3), pp. 229-244. https://doi.org/10.21022/IJHRB.2013.2.3.229
  4. Blocken, B. (2014), 50 Years of computational wind engineering: past, present and future, Journal of Wind Engineering & Industrial Aerodynamics, 129, pp. 69-102. https://doi.org/10.1016/j.jweia.2014.03.008
  5. Cermak, J.E. (1975), Applications of fluid dynamics to wind engineering - A freeman scholar lecture, Journal of Fluid Engineering, 97(1), pp. 9-38.
  6. Cochran, L., and Derickson, R. (2010), A physical modeler's view of computational wind engineering, Proceedings of the Fifth International Symposium on Computational Wind Engineering, Chapel Hill, NC, USA, May, pp. 23-27.
  7. Cook, N.J., and Mayne, J.R. (1979), A novel working approach to the assessment of wind loads for equivalent static design, Journal of Wind Engineering & Industrial Aerodynamics, 4, pp. 149-164. https://doi.org/10.1016/0167-6105(79)90043-6
  8. Cook, N.J., and Mayne, J.R., (1980), A refined working approach to the assessment of wind loads for equivalent static design, Journal of Wind Engineering & Industrial Aerodynamics, 6, pp. 125-137. https://doi.org/10.1016/0167-6105(80)90026-4
  9. Dyrbye, C., and Hansen, S.O. (1997), Wind Loads on Structures. Wiley, New York, USA.
  10. Enoki, K., and Ono, Y., (2016), The prediction of wind loads acting on a building with complex surface using large eddy simulation and its validation, Summaries of Technical Papers of Annual Meeting, B-1. Architectural Institute of Japan, pp. 229-230 (in Japanese).
  11. Flay, R.G.J., (1996), A twisted flow wind tunnel for testing yacht sails. Journal of Wind Engineering & Industrial Aerodynamics, 63, pp. 171-182. https://doi.org/10.1016/S0167-6105(96)00080-3
  12. Flay, R.G.J., Locke, N.J., and Mallinson, G.D., (1996), Model tests of twisted flow wind tunnel designs for testing yacht sails, Journal of Wind Engineering & Industrial Aerodynamics, 63, pp. 155-169.
  13. Fujita, T.T., (1971), Proposed characterization of tornadoes and hurricanes by area and intensity, Satellite and Mesometeorology Research Project Report 91, the University of Chicago, USA.
  14. He, Y.C., Chan, P.W., and Li, Q.S., (2016), Observations of vertical wind profiles of tropical cy-clones at coastal areas, Journal of Wind Engineering & Industrial Aerodynamics, 152, pp. 1-14. https://doi.org/10.1016/j.jweia.2016.01.009
  15. Japan Meteorological Agency (2015), Guidelines for the Japanese Enhanced Fujita Scale, Japan Meteorological Agency.
  16. Kasperski, M. (2003), Specification of wind load based on wind tunnel experiments, Journal of Wind Engineering & Industrial Aerodynamics, 91, pp. 527-541. https://doi.org/10.1016/S0167-6105(02)00407-5
  17. Kasperski, M., (2009), Specification of the design wind load - a critical review of code concepts, Journal of Wind Engineering & Industrial Aerodynamics, 97, pp. 335-357. https://doi.org/10.1016/j.jweia.2009.05.002
  18. Kataoka, H., and Tamura, T., (2015), Numerical Prediction of the Wind Flow Blowing inside and outside of the Existing Urban Canopy, Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp. 741-744 (in Japanese).
  19. Kataoka, H., Kinashi, S., and Kawaguchi, A., (2002), Development of "Zephyrus": a numerical simulator for wind environment, Report of Obayashi Corporation Technical Research Institute 64, pp. 49-54 (in Japanese).
  20. Kataoka, H., Ono, Y., and Enoki, K. (2017), CFD of a complex building in urban area using unstructured grid system, Summaries of Technical Papers of Annual Meeting, B-1. Architectural Institute of Japan, pp. 191-192 (in Japanese).
  21. Kataoka, H., Ono, Y., and Enoki, K. (2020), Applications and prospects of CFD for wind engineering fields, Journal of Wind Engineering & Industrial Aerodynamics 205, 104310.
  22. Kihara, H., Asano, M., Kunitsu, H., and Yosie, K. (2000), Wind and structural form of tall buildings and towers, Kenchiku Gijutsu 605, pp. 164-171 (in Japanese).
  23. Kim, Y.C., Tamura, Y., and Kim, S. (2016), Wind load combinations of atypical super-tall buildings, Journal of Structural Engineering, 142(1), pp. 04015103-1- 04015103-8. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001359
  24. Kim, Y.C., Tamura, Y., Tanaka, H., Ohtake, K., Bandi, E.K., and Yoshida, Y., (2014), Wind-induced responses of super-tall buildings with various atypical building shapes, Journal of Wind Engineering & Industrial Aerodynamics, 133, pp. 191-199. https://doi.org/10.1016/j.jweia.2014.06.004
  25. Kim, Y.C., Tamura, Y., and Yoon, S.W., (2015), Effect of taper on fundamental aeroelastic behaviors of super-tall buildings, Wind and Structures, 20(4), 527-548. https://doi.org/10.12989/WAS.2015.20.4.527
  26. Kim, Y.C., and Kinoshita T., (2023), Evaluation of peak pressure coefficients on low-rise building based on probabilistic theory, Journal of Structural and Construction Engineering, 88(805), pp. 395-402 (In Japanese). https://doi.org/10.3130/aijs.88.395
  27. Kim, Y.C., and Cao, S., (2023), Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings, Wind and Structures, 36(4), pp. 249-261. https://doi.org/10.12989/WAS.2023.36.4.249
  28. Kim, Y.C., Xu, X., Yang, Q., and Tamura, Y., (2019), Shape effects on aerodynamic and pedestrian-level wind characteristics and optimization for tall and super-tall building design, International Journal of High-Rise Buildings, 8(4), pp., 235-253.
  29. Kwon, D.K., Kijewski-Correa, T., and Kareem, A., (2008), E-analysis of high-rise buildings subjected to wind loads, Journal of Structural Engineering, 134 (7), pp. 1139-1153 https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1139)
  30. Liu, Z., Zheng, C.R., Wu, Y., Flay, R.G.J. and Zhang, K., (2019), Wind tunnel simulation of wind flows with the characteristics of thousand meter high ABL, Building and Environment, 152, pp. 74-86.
  31. Liu, Z., Zheng, C., Wu, Y., and Song, Y., (2018), Investigation on characteristics of thousand-meter height wind profiles at non-tropical cyclone prone areas based on field measurement, Building and Environment,130, pp. 62-73. https://doi.org/10.1016/j.buildenv.2017.12.001
  32. Lo, Y.L., and Tseng, Y.F., (2017), Interference effects on tail characteristics of extreme pressure value distributions, Journal of Wind Engineering & Industrial Aerodynamics, 170, pp. 28-45. https://doi.org/10.1016/j.jweia.2017.08.011
  33. Mendenhall, B.R. (1967), Statistical study of frictional wind veering in the planetary boundary layer. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, USA, 1967.
  34. Mochida, A., and Lun, I.Y.F. (2008), Prediction of wind environment and thermal comfort at pedestrial level in urban area, Journal of Wind Engineering & Industrial Aerodynamics, 96, pp. 1498-1527. https://doi.org/10.1016/j.jweia.2008.02.033
  35. Quan, Y., Tamura, Y., Matsui, M., Cao, S.Y., and Yoshida, Y. (2007), TPU aerodynamic database for low-rise buildings, Proceedings of the 12th International Conference on Wind Engineering, Cairns, Australia, pp. 1615-1622.
  36. Shu, Z.R., Li, Q.S., He, Y.C., and Chan, P.W. (2018), Observational study of veering wind by Doppler wind profiler and surface weather station, Journal of Wind Engineering & Industrial Aerodynamics, 178, pp. 18-25. https://doi.org/10.1016/j.jweia.2018.05.001
  37. Tamura, Y. (2009), Wind and tall buildings, The 5th EuropeAfrican Regional Conference on Wind Engineering, Florence, Italy.
  38. Tamura, T. (2010), Application of LES-based model to wind engineering - implementation of meteorological effects, Proceedings of the Fifth International Symposium on Computational Wind Engineering, Chapel Hill, NC, USA.
  39. Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T., and Ishibashi, R. (2007), Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars. Journal of Wind Engineering & Industrial Aerodynamics, 95, pp. 411-427. https://doi.org/10.1016/j.jweia.2006.08.005
  40. Tamura, Y., Matsui, M., Kawana, S., and Kobayashi, F. (2015), Statistical properties of tornadoes in Japan and tornado risk model for nuclear power plants, 14th International Conference on Wind Engineering, Porte Alegre, Brazil, Paper ID03726.
  41. Tamura, T., Nozawa, K., and Kondo, K. (2008), AIJ guide for numerical prediction of wind loads on buildings, Journal of Wind Engineering and Industrial Aerodynamics, 96, pp. 1974-1984. https://doi.org/10.1016/j.jweia.2008.02.020
  42. Tamura, Y., Tanaka, H., Ohtake, K., Nakai, M., and Kim, Y. (2010), Aerodynamic characteristics of tall building models with various unconventional configurations, Structures Congress, pp. 3104-3113.
  43. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., and Kim, Y.C. (2012), Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations, Journal of Wind Engineering & Industrial Aerodynamics, 107-108, pp. 179-191. https://doi.org/10.1016/j.jweia.2012.04.014
  44. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., and Kim, Y.C. (2013), Aerodynamic and flow characteristics of tall buildings with various unconventional configurations, The International Journal of High-Rise Buildings, 2(3), pp. 213-228. https://doi.org/10.21022/IJHRB.2013.2.3.213
  45. Tominaga Y., Mochida A., Yoshie R., Kataoka H., Nozu T., Yoshikawa M., and Shirasawa T. (2008), AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, Journal of Wind Engineering & Industrial Aerodynamics, 96, pp. 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
  46. Tse, K.T., Weerasuriya, A.U., and Kwok, K.C.S. (2016) Simulation of twisted wind flows in a boundary layer wind tunnel for pedestrian-level wind tunnel tests, Journal of Wind Engineering & Industrial Aerodynamics, 159, pp. 99-109. https://doi.org/10.1016/j.jweia.2016.10.010
  47. Xu, X., Yang, Q., Yoshida, A., and Tamura, Y. (2017), Characteristics of pedestrian-level wind around super-tall buildings with various configurations, Journal of Wind Engineering & Industrial Aerodynamics, 166, pp. 61-73. https://doi.org/10.1016/j.jweia.2017.03.013
  48. Yan, B., Li, Y., Li, X., Zhou, X., Wei, M., Yang, Q., and Zhou, X. (2022), Wind tunnel investigation of twisted wind effect on a typical super-tall building, Buildings 12, 2260.
  49. Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., and Shirasawa T. (2007), Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan, Journal of Wind Engineering & Industrial Aerodynamics, 95, pp. 1551-1578 https://doi.org/10.1016/j.jweia.2007.02.023
  50. Zhou, L., Hu, G., Tse, K.T., and He, X.H. (2021), Twisted-wind effect on the flow field of tall building, Journal of Wind Engineering & Industrial Aerodynamics, 218, 104778. https://doi.org/10.1016/j.jweia.2021.104778
  51. Zhou, L., Tse, K.T., and Hu, G., (2022), Experimental investigation on the aerodynamic characteristics of a tall building subjected to twisted wind, Journal of Wind Engineering & Industrial Aerodynamics, 224, 104976.
  52. Zhou, Y., Kijewski, T., and Kareem, A., (2003), Aerodynamic loads on tall buildings: an interactive database, Journal of Structural Engineering, 129(3), pp. 394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394)