DOI QR코드

DOI QR Code

메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin

  • 김영훈 (경북대학교 미래과학기술융합학과) ;
  • 레수안히엔 (경북대학교 재난대응전략연구소) ;
  • 정성호 (경북대학교 미래과학기술융합학과) ;
  • 연민호 (경북대학교 미래과학기술융합학과) ;
  • 이기하 (경북대학교 미래과학기술융합학과)
  • Kim, Younghun (Department of Advance Sicence and Technology Convergence, Kyungpook National University) ;
  • Le, Xuan-Hien (Disaster Prevention Emergency Management Institute, Kyungpook National University) ;
  • Jung, Sungho (Department of Advance Sicence and Technology Convergence, Kyungpook National University) ;
  • Yeon, Minho (Department of Advance Sicence and Technology Convergence, Kyungpook National University) ;
  • Lee, Gihae (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 투고 : 2022.08.30
  • 심사 : 2022.12.01
  • 발행 : 2023.02.28

초록

강우-유출 해석은 하천 홍수예경보, 댐 유입량 산정 및 방류량 결정 등 수자원 관리 및 계획수립에 있어 중요한 과정이며, 밀도높은 강우관측망으로부터 수집된 강우 자료는 정확한 강우-유출 해석을 위한 가장 중요한 기초 자료로 활용된다. 본 연구 대상 지역인 메콩강 유역은 국가공유하천으로 강수 자료수집이 어렵고, 구축된 자료의 양적, 질적 품질이 국가별로 상이하여 수문해석 결과의 불확실성을 높일 우려가 있다. 최근 원격탐사 기술의 발달로 격자형 글로벌 강수자료의 획득이 용이해졌으며, 이를 활용한 미계측 유역 또는 대유역에서의 다양한 수문해석 연구들이 수행된 바 있다. 본 연구에서는 미계측 대유역 수문해석에 있어 격자형 강수자료의 적용성을 평가하기 위하여 3개의 위성 강수자료(TRMM, GSMaP, PERSIANN-CDR)와 2개의 지점 격자형 강수자료(APHRODITE, GPCC)를 수집하고, APHRODITE를 관측값으로 합성곱 신경망 모형인 ConvAE 알고리즘을 이용하여 위성 강수자료의 시·공간적 편의보정을 수행하였다. 또한, 메콩강 본류의 주요지점인 Luang Prabang, Pakse, Stung Treng, Kratie 4개 수위 관측소를 선정하여 SWAT 모형의 매개변수를 보정(2004~2011)하고 지점 격자형 강수자료 및 위성 강수자료의 보정전·후의 유출모의(2012~2013) 결과를 비교·분석하였다. 그 결과 원시위성 강수자료 및 GPCC는 APHPRODITE에 비해 정량적으로 과소 또는 과대추정되거나 공간적으로 매우 상이한 패턴을 나타낸 반면, GSMaP과 ConvAE를 이용하여 보정된 위성 강수자료의 경우, APHPRODITE에 대한 시·공간적 상관성이 개선된 것으로 분석되었다. 또한 유출모의의 경우, 모든 지점에 대해서 ConvAE로 보정된 위성 강수자료를 이용한 유출모의 결과가 원시 위성강수자료를 이용한 유출결과 보다 정확도가 향상된 것으로 분석되었다. 따라서 본 연구에서 제시하는 격자형 위성 강수자료 보정기법과 연계한 강우-유출 해석은 향후 다양한 위성 강수자료를 활용한 미계측 대유역 수문해석에서 활용이 가능할 것으로 판단된다.

As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

키워드

과제정보

본 연구는 환경부 "표토보전관리기술개발사업; 2019002830001"으로 지원받은 과제임.

참고문헌

  1. Chen, A., Chen, D., and Azorin Molina, C. (2018). "Assessing reliability of precipitation data over the Mekong River basin: A comparison of ground-based, satellite, and reanalysis datasets." International Journal of Climatology, Vol. 38, No. 11, pp. 4314-4334. https://doi.org/10.1002/joc.5670
  2. Cho, J., Kim, C.G., Hwang, S., Shin, J., and Park, J. (2019). "Hydrologic evaluation of grid-based global climate data for use in ungauged watershed." Journal of Climate Change Research, Vol. 10, No. 1, pp. 23-34. https://doi.org/10.15531/ksccr.2019.10.1.23
  3. Dhungana, S., Shrestha, S., Van, T.P., Kc, S., Das Gupta, A., and Nguyen, T.P.L. (2023). "Evaluation of gridded precipitation products in the selected sub-basins of Lower Mekong River basin." Theoretical and Applied Climatology, Vol. 151, pp. 293-310. https://doi.org/10.1007/s00704-022-04268-1
  4. Dinh, K.D., Anh, T.N., Nguyen, N.Y., Bui, D.D., and Srinivasan, R. (2020). "Evaluation of grid-based rainfall products and water balances over the Mekong River basin." Remote Sensing, Vol. 12, No. 11, 1858.
  5. Fu, Q., Ruan, R., and Liu, Y. (2011). "Accuracy assessment of global satellite mapping of precipitation (gsmap) product over poyang lake basin, China." Procedia Environmental Sciences, Vol. 10, pp. 2265-2271. https://doi.org/10.1016/j.proenv.2011.09.354
  6. Irannezhad, M., and Liu, J. (2022). "Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River basin." Geography and Sustainability, Vol. 3, No. 1, pp. 85-103. https://doi.org/10.1016/j.geosus.2022.03.002
  7. Jung, S., Oh, S., Lee, D., Le, X. H., and Lee, G. (2021). "Application of convolutional autoencoder for spatiotemporal bias-correction of radar precipitation." Journal of Korea Water Resources Association, Vol. 54, No. 7, pp. 453-462.
  8. Karimpouli, S., and Tahmasebi, P. (2019). "Segmentation of digital rock images using deep convolutional autoencoder networks." Computers and Geosciences, Vol. 126, pp. 142-150. https://doi.org/10.1016/j.cageo.2019.02.003
  9. Kim, D.H., and Kim, S.M. (2016). "Evaluation of SWAT model applicability for runoff estimation in Nam River dam watershed." Journal of the Korean Society of Agricultural Engineers, Vol. 58, No. 4, pp. 9-19. https://doi.org/10.5389/KSAE.2016.58.4.009
  10. Kim, J.H., Choi, Y.S., and Kim, K.T. (2020). "Comparison of accuracy for GPM IMERG, GSMaP and CMORPH satellite precipitation products over Korea." Journal of the Korean Association of Geographic Information Studies, Vol. 23, No. 3, pp. 208-219.
  11. Kim, J.P., Park, K.W., Jung, I.W., Han, K.S., and Kim, G. (2013). "Application of high resolution multi-satellite precipitation products and a distributed hydrological modeling for daily runoff simulation." Korean Journal of Remote Sensing, Vol. 29, No. 2, pp. 263-274. https://doi.org/10.7780/KJRS.2013.29.2.10
  12. Kim, J.P., Park, K.W., Jung, I.W., Kim, G., and Yoon, S.K. (2014). "Validation of multi-satellite precipitation products for assessing their potential utility of hydrological application over South Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 14, No. 2, pp. 85-96. https://doi.org/10.9798/KOSHAM.2014.14.2.85
  13. Le, X.H., Lee, G., Jung, K., An, H.U., Lee, S., and Jung, Y. (2020). "Application of convolutional neural network for spatiotemporal bias correction of daily satellite-based precipitation." Remote Sensing, Vol. 12, No. 17, 2731.
  14. Lee, D.E. (2019). Analysis of runoff and flood inundation in the lower Mekong River basin due to climate change. Ph. D. dissertation, Kyungpook National University, pp. 95-97.
  15. Lee, D.E., Yu, W.S., and Lee, G.H. (2018). "Large scale rainfall-runoff analysis using SWAT model: Case study: Mekong River basin." Journal of the Korean Society of Agricultural Engineers, Vol. 60, No. 1, pp. 47-57. https://doi.org/10.5389/KSAE.2018.60.1.047
  16. Li, Z., Yang, D., and Hong, Y. (2013). "Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River." Journal of Hydrology, Vol. 500, pp. 157-169. https://doi.org/10.1016/j.jhydrol.2013.07.023
  17. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  18. Try, S., Tanaka, S., Tanaka, K., Sayama, T., Oeurng, C., Uk, S., Takara, K., Hu, M., and Han, D. (2020). "Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River basin." PLoS One, Vol. 15, No. 1, e0226814.
  19. Wang, W., Lu, H., Yang, D., Sothea, K., Jiao, Y., Gao, B., Peng, X., and Pang, Z. (2016). "Modelling hydrologic processes in the Mekong River Basin using a distributed model driven by satellite precipitation and rain gauge observations." PloS One, Vol. 11, No. 3, e0152229.