DOI QR코드

DOI QR Code

Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete

  • Muhammad, Akbar (Department of Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Sciences) ;
  • Zahoor, Hussain (School of Civil Engineering, Zhengzhou University) ;
  • Pan, Huali (Department of Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Sciences) ;
  • Muhammad, Imran (Department of Civil Engineering, Sir Syed University of Engineering and Technology) ;
  • Blessen Skariah, Thomas (Department of Civil Engineering, National Institute of Technology)
  • Received : 2022.08.06
  • Accepted : 2023.01.06
  • Published : 2023.01.25

Abstract

The use of environmental-friendly building materials is becoming increasingly popular worldwide. Compared to the normal concrete, rubber-based concrete is considered more durable, environmentally friendly, socially and economically viable. In this investigation, M20 grade concrete was designed and the fine aggregates were replaced with crumb rubber of two different micron sizes (0.221 mm and 0.350 mm). Fly ash (FA) and silica fume (SF) replaces the binder as supplementary cementitious materials at a rate of 0, 5, 10, 15, and 20% by weight. The mechanical properties of concrete including compressive strength, tensile, and flexural strength were determined. The polynomial work expectation validates the response surface approach (RSM) concept for optimizing SF and FA substitution. The maximum compressive strength (22.53 MPa) can be observed for the concrete containing 10% crumb rubber, 15% fly ash and 15% silica fume. The reduced unit weight of the rubberized concrete may be attributed to the lower specific gravity of the rubber particles. Two-way ANOVA with a significance criterion of less than 0.001 has been utilized with modest residual error from the lack of fit and the pure error. The predictive model accurately forecasts the variable-response relationship. Since, the crumb rubber is obtained from wasted tires incorporating FA and SF as a cementitious ingredient, it helps to significantly improve mechanical properties of concrete and reduce environmental degradation.

Keywords

Acknowledgement

The authors would like to acknowledge Institute of Mountain Hazards Environment, Chinese Academy of Sciences, Chengdu, China for providing us the platform to conduct this valuable research.

References

  1. Ahmed, S., Hussain, A., Hussain, Z., Pu, Z., Ostrowski, K. A. and Walczak, R. (2021), "Effect of Carbon black and hybrid steel-polypropylene fiber on the mechanical and self-sensing characteristics of concrete considering different coarse aggregates' sizes", Mater., 14(23), 7455. https://doi.org/10.3390/ma14237455.
  2. Aiello, M.A. and Leuzzi, F. (2010), "Waste tyre rubberized concrete: Properties at fresh and hardened state", Waste Manage., 30(8-9), 1696-1704. https://doi.org/10.1016/j.wasman.2004.01.006.
  3. Akbar, M., Umar, T., Hussain, Z., Pan, H. and Ou, G. (2022), "Effect of human hair fibers on the performance of concrete incorporating high dosage of silica fume", Appl. Sci., 13(1), 124. https://doi.org/10.3390/app13010124.
  4. Alaloul, W.S., Musarat, M.A., Tayeh, B.A., Sivalingam, S., Rosli, M.F.B., Haruna, S. and Khan, M.I. (2020), "Mechanical and deformation properties of rubberized engineered cementitious composite (ECC)", Case Stud. Constr. Mater., 13, e00385. https://doi.org/10.1016/j.cscm.2020.e00385.
  5. Alaloul, W.S., Musarat, M.A., Tayeh, B.A., Sivalingam, S., Rosli, M.F.B., Haruna, S. and Khan, M.I. (2020), "Mechanical and deformation properties of rubberized engineered cementitious composite (ECC)", Case Stud. Constr. Mater., 13, e00385. https://doi.org/10.1016/j.cscm.2020.e00385.
  6. Al-Attar, A.A., Hamada, H.M., Tayeh, B.A. and Awoyera, P.O. (2022), "Exploring engineering properties of waste tire rubber for construction applications-A review of recent advances", Mater. Today: Proc., 53, A1-A17. https://doi.org/10.1016/j.matpr.2022.03.228.
  7. Albano, C., Camacho, N., Reyes, J., Feliu, J.L. and Hernandez, M. (2005), "Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing", Compos. Struct., 71(3-4), 439-446. https://doi.org/10.1016/j.compstruct.2005.09.037.
  8. Ali, A., Hussain, Z., Akbar, M., Elahi, A., Bhatti, S., Imran, M., ... & Leslie Ndam, N. (2022), "Influence of marble powder and polypropylene fibers on the strength and durability properties of Self-Compacting Concrete (SCC)", Adv. Mater. Sci. Eng., 2022, Article ID 9553382. https://doi.org/10.1155/2022/9553382.
  9. Anderson, M.J. and Whitcomb, P.J. (2016), RSM Simplified: Optimizing Processes using Response Surface Methods for Design of Experiments, Productivity Press.
  10. Azevedo, F., Pacheco-Torgal, F., Jesus, C., De Aguiar, J.B. and Camoes, A.F. (2012), "Properties and durability of HPC with tyre rubber wastes", Constr. Build. Mater., 34, 186-191. https://doi.org/10.1016/j.conbuildmat.2012.02.062.
  11. Bagheri, M., Chahkandi, A. and Jahangir, H. (2019), "Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers", Int. J. Civil Eng., 17(11), 1785-1797. https://doi.org/10.1007/s40999-019-00438-x.
  12. Banaeipour, A., Tavakkolizadeh, M., Akbar, M., Hussain, Z., Ostrowski, K.A., Bahadori, A. and Spyrka, M. (2022), "Effects of small deviations in fiber orientation on compressive characteristics of plain concrete cylinders confined with FRP laminates", Mater., 16(1), 261. https://doi.org/10.3390/ma16010261.
  13. Cai, X., Zhang, L., Pan, W., Wang, W., Guan, Q., Zhai, S., ... & Zhang, Y. (2022), "Study on evaluation of elastic modulus of crumb rubber concrete in meso-scale", Constr. Build. Mater., 331, 127247. https://doi.org/10.1016/j.conbuildmat.2022.127247.
  14. Chen, X., Liu, Z., Guo, S., Huang, Y. and Xu, W. (2019), "Experimental study on fatigue properties of normal and rubberized self-compacting concrete under bending", Constr. Build. Mater., 205, 10-20. https://doi.org/10.1016/j.conbuildmat.2019.01.207.
  15. Draper, N.R. (1997), "Response surface methodology: Process and product optimization using designed experiments: R.H. Myers and D.C. Montgomery, (Wiley, New York, 1995, $59.95, ISBN: 0471581003, pp. 714)", J. Stat. Plan. Inferen., 59(1), 185-186. https://doi.org/10.1016/S0378-3758(97)81631-X
  16. Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo, J., Bonilla, M. and Paya, J. (2014), "Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires", Mater. Des., 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021.
  17. Elsayed, M., Tayeh, B. A. and Kamal, D. (2021), "Effect of crumb rubber on the punching shear behaviour of reinforced concrete slabs with openings", Constr. Build. Mater., 311, 125345. https://doi.org/10.1016/j.conbuildmat.2021.125345.
  18. Elsayed, M., Tayeh, B.A., Mohamed, M., Elymany, M. and Mansi, A.H. (2021), "Punching shear behaviour of RC flat slabs incorporating recycled coarse aggregates and crumb rubber", J. Build. Eng., 44, 103363. https://doi.org/10.1016/j.jobe.2021.103363.
  19. Fahmy, M.F. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. Part B: Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.
  20. Guneyisi, E., Gesoglu, M., Algin, Z. and Mermerdas, K. (2014), "Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method", Compos. Part B: Eng., 60, 707-715. https://doi.org/10.1016/j.compositesb.2014.01.017.
  21. Hameed, A.S. and Shashikala, A.P. (2016), "Suitability of rubber concrete for railway sleepers", Perspect. Sci., 8, 32-35. https://doi.org/10.1016/j.pisc.2016.01.011.
  22. Haruna, S., Mohammed, B.S., Wahab, M.M.A. and Haruna, A. (2020), "Compressive strength and workability of High Calcium One-Part alkali activated mortars using response surface methodology", IOP Conf. Ser.: Earth Environ. Sci., 476(1), 012018. https://doi.org/10.1088/1755-1315/476/1/012018.
  23. Hassanli, R., Mills, J.E., Li, D. and Benn, T. (2017), "Experimental and numerical study on the behavior of rubberized concrete", Adv. Civil Eng. Mater., 6(1), 134-156. https://doi.org/10.1520/ACEM20160026.
  24. Hu, C. and Li, Z. (2015), "Property investigation of individual phases in cementitious composites containing silica fume and fly ash", Cement Concrete Compos., 57, 17-26. https://doi.org/10.1016/j.cemconcomp.2014.11.011.
  25. Hussain, A., Xiang, Y., Yu, T. and Zou, F. (2022), "Nanocarbon black-based ultra-high-performance concrete (UHPC) with self-strain sensing capability", Constr. Build. Mater., 359, 129496. https://doi.org/10.1016/j.conbuildmat.2022.129496.
  26. Hussain, Z., Pu, Z., Hussain, A., Ahmed, S., Shah, A.U., Ali, A. and Ali, A. (2022), "Effect of fiber dosage on water permeability using a newly designed apparatus and crack monitoring of steel fiber-reinforced concrete under direct tensile loading", Struct. Hlth. Monit., 21(5), 2083-2096. https://doi.org/10.1177/14759217211052855.
  27. Kwan, A.K.H. and Chen, J.J. (2013), "Adding fly ash microsphere to improve packing density, flowability and strength of cement paste", Powder Technol., 234, 19-25. https://doi.org/10.1016/j.powtec.2012.09.016.
  28. Lee, J.H., Lee, D.H., Lim, J.S., Um, B.H., Park, C.H., Kang, S.W. and Kim, S.W. (2008), "Optimization of the process for biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases", J. Microbiol. Biotechnol., 18(12), 1927-1931. https://doi.org/10.1016/S0924-0136(03)00861-6.
  29. Li, L., Ruan, S. and Zeng, L. (2014), "Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles", Constr. Build. Mater., 70, 291-308. https://doi.org/10.1016/j.conbuildmat.2014.07.105.
  30. Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.cemconcomp.2015.02.010.
  31. Mohammed, B.S., Haruna, S. and Liew, M.S. (2019), "Optimization and characterization of cast in-situ alkali-activated pastes by response surface methodology", Constr. Build. Mater., 225, 776-787. https://doi.org/10.1016/j.conbuildmat.2019.07.267.
  32. Nili, M. and Afroughsabet, V. (2010), "Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete", Int. J. Impact Eng., 37(8), 879-886. https://doi.org/10.1016/j.ijimpeng.2010.03.004.
  33. Ponikiewski, T. and Golaszewski, J. (2014), "The influence of high-calcium fly ash on the properties of fresh and hardened self-compacting concrete and high performance self-compacting concrete", J. Clean. Prod., 72, 212-221. https://doi.org/10.1016/j.jclepro.2014.02.058.
  34. Qaidi, S.M., Dinkha, Y.Z., Haido, J.H., Ali, M.H. and Tayeh, B.A. (2021), "Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review", J. Clean. Prod., 324, 129251. https://doi.org/10.1016/j.jclepro.2021.129251.
  35. Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
  36. Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
  37. Radlinski, M. and Olek, J. (2012), "Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume", Cement Concrete Compos., 34(4), 451-459. https://doi.org/10.1016/j.cemconcomp.2011.11.014.
  38. Santandrea, M., Imohamed, I.A.O., Jahangir, H., Carloni, C., Mazzotti, C., De Miranda, S., ... & Casadei, P. (2016), "An investigation of the debonding mechanism in steel FRP-and FRCM-concrete joints", 4th Workshop on the New Boundaries of Structural Concrete, September
  39. Shu, X. and Huang, B. (2014), "Recycling of waste tire rubber in asphalt and portland cement concrete: An overview", Constr. Build. Mater., 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027.
  40. Sovjak, R., Peskova, S., Smilauer, V., Mara, M., Ruzicka, P., Vydrova, L.C. and Konvalinka, P. (2019), "Utilization of crumb rubber and FBC-based ternary binder in shotcrete lining", Case Stud. Constr. Mater., 11, e00234. https://doi.org/10.1016/j.cscm.2019.e00234.
  41. Strukar, K., Sipos, T.K., Milicevic, I. and Busic, R. (2019), "Potential use of rubber as aggregate in structural reinforced concrete element-A review", Eng. Struct., 188, 452-468. https://doi.org/10.1016/j.engstruct.2019.03.031.
  42. Sumer, M. (2012), "Compressive strength and sulfate resistance properties of concretes containing Class F and Class C fly ashes", Constr. Build. Mater., 34, 531-536. https://doi.org/10.1016/j.conbuildmat.2012.02.023.
  43. Sun, Y., Li, G., Zhang, J. and Qian, D. (2019), "Prediction of the strength of rubberized concrete by an evolved random forest model", Adv. Civil Eng., 2019, Article ID 5198583. https://doi.org/10.1155/2019/5198583.
  44. Svoboda, J., Vaclavik, V., Dvorsky, T., Klus, L. and Zajac, R. (2018), "The potential utilization of the rubber material after waste tire recycling", IOP Conf. Ser.: Mater. Sci. Eng., 385(1), 012057). https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  45. Thomas, B.S., Gupta, R.C. and Panicker, V.J. (2015), "Experimental and modelling studies on high strength concrete containing waste tire rubber", Sustain. Citi. Soc., 19, 68-73. https://doi.org/10.1016/j.scs.2015.07.013.
  46. Tran, T.Q., Thomas, B.S., Zhang, W., Ji, B., Li, S. and Brand, A.S. (2022), "A comprehensive review on treatment methods for end-of-life tire rubber used for rubberized cementitious materials", Constr. Build. Mater., 359, 129365. https://doi.org/10.1016/j.conbuildmat.2022.129365.
  47. Umar, T., Yousaf, M., Akbar, M., Abbas, N., Hussain, Z. and Ansari, W.S. (2022), "An experimental study on nondestructive evaluation of the mechanical characteristics of a sustainable concrete incorporating industrial waste", Mater., 15(20), 7346. https://doi.org/10.3390/ma15207346.
  48. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
  49. Zhu, H., Duan, F., Shao, J.W., Shi, W. and Lin, Z. (2021), "Material and durability study of a 10-year-old crumb rubber concrete bridge deck in Tianjin, China", Mag. Concrete Res., 73(10), 499-511. https://doi.org/10.1680/jmacr.19.00238.