DOI QR코드

DOI QR Code

Identification and Characterization of Pseudomonas syringae pv. syringae, a Causative Bacterium of Apple Canker in Korea

  • Seunghee, Lee (Department of Plant Medicals, Andong National University) ;
  • Wonsu, Cheon (Department of Plant Medicals, Andong National University) ;
  • Hyeok Tae, Kwon (Department of Plant Medicals, Andong National University) ;
  • Younmi, Lee (Department of Plant Medicals, Andong National University) ;
  • Jungyeon, Kim (Department of Plant Medicals, Andong National University) ;
  • Kotnala, Balaraju (Agricultural Science & Technology Research Institute, Andong National University) ;
  • Yongho, Jeon (Department of Plant Medicals, Andong National University)
  • Received : 2022.08.30
  • Accepted : 2022.12.19
  • Published : 2023.02.01

Abstract

In the present investigation, bacterial isolates from infected apple trees causing apple canker during winter were studied in the northern Gyeongbuk Province, Korea. The pathogen was identified as Pseudomonas syringae pv. syringae (Pss) through various physiological and biochemical characterization assays such as BIOLOG, gas chromatography of fatty acid methyl esters, and 16S rRNA. Bioassays for the production of phytotoxins were positive for syringopeptin and syringomycin against Bacillus megaterium and Geotrichum candidum, respectively. The polymerase chain reaction (PCR) method enabled the detection of toxin-producing genes, syrB1, and sypB in Pss. The differentiation of strains was performed using LOPAT and GATTa tests. Pss further exhibited ice nucleation activity (INA) at a temperature of -0.7℃, indicating an INA+ bacterium. The ice-nucleating temperature was -4.7℃ for a non-treated control (sterilized distilled water), whereas it was -9.6℃ for an INA- bacterium Escherichia coli TOP10. These methods detected pathogenic strains from apple orchards. Pss might exist in an apple tree during ice injury, and it secretes a toxin that makes leaves yellow and cause canker symptoms. Until now, Korea has not developed antibiotics targeting Pss. Therefore, it is necessary to develop effective disease control to combat Pss in apple orchards. Pathogenicity test on apple leaves and stems showed canker symptoms. The pathogenic bacterium was re-isolated from symptomatic plant tissue and confirmed as original isolates by 16S rRNA. Repetitive element sequence-based PCR and enterobacterial repetitive intergenic consensus PCR primers revealed different genetic profiles within P. syringae pathovars. High antibiotic susceptibility results showed the misreading of mRNA caused by streptomycin and oxytetracycline.

Keywords

Acknowledgement

This work was supported by a grant from research fund of Andong National University.

References

  1. Araujo, L., Cardoza, Y. F., Duarte, V. and de Moraes, M. G. 2020. Pseudomonas syringae causing bacterial canker on apple trees in Brazil. Bragantia 79:592-598.  https://doi.org/10.1590/1678-4499.20200246
  2. Bergey, D. H., Breed, R. S., Murray, E. G. D. and Hitchens, A. P. 1939. Bacterium methylicum (Loew) Migula. (Bacillus methylicus Loew). In: Bergey's manual of determinative bacteriology: a key for the identification of organisms of the class Schizomycetes, eds. by D. H. Bergey, R. S. Breed, E. G. D. Murray and A. P. Hitchens, 5th ed., p. 597. Bailliere, Tindall & Cox, London, UK. 
  3. Bultreys, A., Gheysen, I., Maraite, H. and de Hoffmann, E. 2001. Characterization of fluorescent and nonfluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl. Environ. Microbiol. 67:1718-1727.  https://doi.org/10.1128/AEM.67.4.1718-1727.2001
  4. Bultreys, A. and Kaluzna, M. 2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J. Plant Pathol. 92:S21-S33. 
  5. Cambours, M. A., Nejad, P., Granhall, U. and Ramstedt, M. 2005. Frost-related dieback of willows. Comparison of epiphytically and endophytically isolated bacteria from different Salix clones, with emphasis on ice nucleation activity, pathogenic properties and seasonal variation. Biomass Bioenerg. 28:15-27.  https://doi.org/10.1016/j.biombioe.2004.06.003
  6. Cao, T., Sayler, R. J., Dejong, T. M., Kirkpatrick, B. C., Bostock, R. M. and Shackel, K. A. 1999. Influence of stem diameter, water content, and freezing-thawing on bacterial canker development in excised stems of dormant stone fruit. Phytopathology 89:962-966.  https://doi.org/10.1094/PHYTO.1999.89.10.962
  7. Cazorla, F. M., Tores, J. A., Olalla, L., Perez-Garcia, A., Farre, J. M. and de Vicente, A. 1998. Bacterial apical necrosis of mango in Southern Spain: a disease caused by Pseudomonas syringae pv. syringae. Phytopathology 88:614-620.  https://doi.org/10.1094/PHYTO.1998.88.7.614
  8. Cepni, E. and Gurel, F. 2012. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates. Genet. Mol. Biol. 35:650-656.  https://doi.org/10.1590/S1415-47572012005000040
  9. Choi, S. and Hinkle, A. F. 2017. South Korea: 2017 apple report-revised. Gain report No. KS1733. URL https://www.fas.usda.gov/data/south-korea-2017-apple-report-revised [23 November 2018]. 
  10. Dolgun, O., Yildirim, A., Polat, M., Yildirim, F. and Askin, A. 2009. Apple graft formation in relation to growth rate features of rootstocks. Afr. J. Agric. Res. 4:530-534. 
  11. Flores, O., Prince, C., Nunez, M., Vallejos, A., Mardones, C., Yanez, C., Besoain, X. and Bastias, R. 2018. Genetic and phenotypic characterization of indole-producing isolates of Pseudomonas syringae pv. actinidiae obtained from chilean kiwifruit orchards. Front. Microbiol. 9:1907.  https://doi.org/10.3389/fmicb.2018.01907
  12. Fogliano, V., Gallo, M., Vinale, F., Ritieni, A., Randazzo, G., Greco, M., Lops, R. and Graniti, A. 1999. Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans. Physiol. Mol. Plant Pathol. 55:255-261.  https://doi.org/10.1006/pmpp.1999.0227
  13. Foster, T. M., McAtee, P. A., Waite, C. N., Boldingh, H. L. and McGhie, T. K. 2017. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Hortic. Res. 4:17009.  https://doi.org/10.1038/hortres.2017.9
  14. Gallelli, A., Talocci, S., L'Aurora, A. and Loreti, S. 2011. Detection of Pseudomonas syringae pv. actinidiae, causal agent of bacterial canker of kiwifruit, from symptomless fruits and twigs, and from pollen. Phytopathol. Mediterr. 50:462-472. 
  15. Gasic, K., Pavlovic, Z., Santander, R. D., Meredith, C. and Acimovic, S. G. 2018. First report of Pseudomonas syringae pv. syringae associated with bacterial blossom blast on apple (Malus pumila) in the United States. Plant Dis. 102:1848.  https://doi.org/10.1094/PDIS-01-18-0184-PDN
  16. Gasic, K., Prokic, A., Ivanovic, M., Kuzmanovic, N. and Obradovic, A. 2012. Differentiation of Pseudomonas syringae pathovars originating from stone fruits. Pestic Phytomed. (Belgrade) 27:219-229.  https://doi.org/10.2298/PIF1203219G
  17. Gomila, M., Busquets, A., Mulet, M., Garcia-Valdes, E. and Lalucat, J. 2017. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Front. Microbiol. 8:2422.  https://doi.org/10.3389/fmicb.2017.02422
  18. Gonzalez, C. F., DeVay, J. E. and Wakeman, R. J. 1981. Syringotoxin: a phytotoxin unique to citrus isolates of Pseudomonas syringae. Physiol. Plant Pathol. 18:41-50.  https://doi.org/10.1016/s0048-4059(81)80052-5
  19. Gormez, A., Sahin, F., Gulluce, M. and Aslan, I. 2013. Identification and characterization of Pseudomonas syringae isolated from apricot trees in the Erzurum province of Turkey and evaluation of cultivar reaction. J. Plant Pathol. 95:525-532. 
  20. Grgurina, I., Gross, D. C., Iacobellis, N. S., Lavermicocca, P., Takemoto, J. Y. and Benincasa, M. 1996. Phytotoxin production by Pseudomonas syringae pv. syringae: syringopeptin production by syr mutants defective in biosynthesis or secretion of syringomycin. FEMS Microbiol. Lett. 138:35-39.  https://doi.org/10.1111/j.1574-6968.1996.tb08131.x
  21. Hirano, S. S. and Upper, C. D. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624-653.  https://doi.org/10.1128/MMBR.64.3.624-653.2000
  22. Ivanovic, Z., Perovic, T., Popovic, T., Blagojevic, J., Trkulja, N. and Hrncic, S. 2017. Characterization of Pseudomonas syringae pv. syringae, causal agent of citrus blast of mandarin in Montenegro. Plant Pathol. J. 33:21-33.  https://doi.org/10.5423/PPJ.OA.08.2016.0161
  23. Jeon, Y. H., Chang, S. P., Hwang, I. and Kim, Y. H. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13:881-891. 
  24. Jones, J. B., Chase, A. R. and Harris, G. K. 1993. Evaluation of the Biolog GN microplate system for identification of some plant-pathogenic bacteria. Plant Dis. 77:553-558.  https://doi.org/10.1094/PD-77-0553
  25. Jones, J. B., Gitaitis, R. D. and McCarter, S. M. 1983. Evaluation of indirect immunofluorescence and ice nucleation activity as rapid tests for identifying foliar diseases of tomato transplants incited by fluorescent pseudomonads. Plant Dis. 67:684-687.  https://doi.org/10.1094/PD-67-684
  26. Kaluzna, M., Ferrante, P., Sobiczewski, P. and Scortichini, M. 2010. Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. J. Plant Pathol. 92:781-787. 
  27. Kang, H. and Gross, D. C. 2005. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 71:5056-5065.  https://doi.org/10.1128/AEM.71.9.5056-5065.2005
  28. Kennelly, M. M., Cazorla, F. M., de Vicente, A., Ramos, C. and Sundin, G. W. 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis. 91:4-17.  https://doi.org/10.1094/pd-91-0004
  29. Kerkoud, M., Manceau, C. and Paulin, J. P. 2002. Rapid diagnosis of Pseudomonas syringae pv. papulans, the causal agent of blister spot of apple, by polymerase chain reaction using specifically designed hrpL gene primers. Phytopathology 92:1077-1083.  https://doi.org/10.1094/PHYTO.2002.92.10.1077
  30. Kim, Y. S., Kotnala, B., Kim, Y. H. and Jeon, Y. 2016. Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng. J. Ginseng Res. 40:453-461.  https://doi.org/10.1016/j.jgr.2015.09.003
  31. Kim, Y. and Kim, N. 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26:1117-1123.  https://doi.org/10.1093/ee/26.5.1117
  32. Lee, D. H., Lee, S. W., Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22:375-380.  https://doi.org/10.5423/PPJ.2006.22.4.375
  33. Lee, S., Cheon, W. and Jeon, Y. 2015. First report of bacterial shoot blight caused by Pseudomonas syringae pv. syringae of apple (Malus pumila) in Korea. Plant Dis. 99:1641.  https://doi.org/10.1094/PDIS-11-14-1164-PDN
  34. Lelliott, R. A. and Stead, D. E. 1987. Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, UK. 216 pp. 
  35. Lelliott, R. A., Billing, E. and Hayward, A. C. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470-489.  https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
  36. Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Ann. Rev. Phytopathol. 21:363-384.  https://doi.org/10.1146/annurev.py.21.090183.002051
  37. Liu, M., Zhang, W., Manawasinghe, I. S., Zhou, Y., Xing, Q. K., Li, X. H., Yan, J. Y. and Wang, S. 2018. First report of Nothophoma quercina causing trunk canker on crabapple (Malus micromalus) in China. Plant Dis. 102:1462.  https://doi.org/10.1094/PDIS-11-17-1866-PDN
  38. Lu, S.-E., Wang, N., Wang, J., Chen, Z. J. and Gross, D. C. 2005. Oligonucleotide microarray analysis of the salA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. Mol. Plant-Microbe Interact. 18:324-333.  https://doi.org/10.1094/MPMI-18-0324
  39. Lukas, M., Schwidetzky, R., Eufemio, R. J., Bonn, M. and Meister, K. 2022. Toward understanding bacterial ice nucleation. J. Phys. Chem. B 126:1861-1867.  https://doi.org/10.1021/acs.jpcb.1c09342
  40. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:1064-1073.  https://doi.org/10.1126/science.257.5073.1064
  41. Perminow, J. I. S., Borve, J., Brurberg, M. B. and Stensvand, A. 2018. First report of Pseudomonas syringae pv. syringae causing bacterial blister bark on apple in Norway. Plant Dis. 102:1653.  https://doi.org/10.1094/PDIS-11-17-1712-PDN
  42. Popovic, T., Menkovic, J., Prokic, A., Zlatkovic, N. and Obradovic, A. 2021. Isolation and characterization of Pseudomonas syringae isolates affecting stone fruits and almond in Montenegro. J. Plant Dis. Prot. 128:391-405. https://doi.org/10.1007/s41348-020-00417-8
  43. Ritchie, H. and Roser, M. 2020. Agriculture production. Published online at OurWorldindata.org. URL https://ourworldindata.org/agricultural-production [28 December 2022]. 
  44. Rodrigo, J. 2000. Spring frosts in deciduous fruit trees - morphological damage and flower hardiness. Sci. Hortic. 85:155-173.  https://doi.org/10.1016/S0304-4238(99)00150-8
  45. Rommel, C. C., Valdebenito-Sanhueza, R. M. and Duarte, V. 2010. Detection of bacteria associated with European pear buds in Rio Grande do Sul State, Brazil. Trop. Plant Pathol. 35:360-367 (in Portuguese).  https://doi.org/10.1590/S1982-56762010000600004
  46. Ruinelli, M., Blom, J., Smits, T. H. M. and Pothier, J. F. 2019. Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp. BMC Genomics 20:172.  https://doi.org/10.1186/s12864-019-5555-y
  47. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. APS Press, St. Paul, MN, USA. 373 pp. 
  48. Scheck, H. J. and Pscheidt, J. W. 1998. Effect of copper bactericides on copper-resistant and -sensitive strains of Pseudomonas syringae pv. syringae. Plant Dis. 82:397-406.  https://doi.org/10.1094/PDIS.1998.82.4.397
  49. Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I. and Gross, D. C. 2001. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant-Microbe Interact. 14:336-348.  https://doi.org/10.1094/mpmi.2001.14.3.336
  50. Scholz-Schroeder, B. K., Soule, J. D. and Gross, D. C. 2003. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol. Plant-Microbe Interact. 16:271-280.  https://doi.org/10.1094/MPMI.2003.16.4.271
  51. Scortichini, M., Marchesi, U., Dettori, M. T. and Rossi, M. P. 2003. Genetic diversity, presence of the syrB gene, host preference and virulence of Pseudomonas syringae pv. syringae strains from woody and herbaceous host plants. Plant Pathol. 52:277-286.  https://doi.org/10.1046/j.1365-3059.2003.00860.x
  52. Singh, J., Silva, K. J. P., Fuchs, M. and Khan, A. 2019. Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE 14:e0213293.  https://doi.org/10.1371/journal.pone.0213293
  53. Slabbinck, B., De Baets, B., Dawyndt, P. and De Vos, P. 2009. Towards large-scale FAME-based bacterial species identification using machine learning techniques. Syst. Appl. Microbiol. 32:163-176.  https://doi.org/10.1016/j.syapm.2009.01.003
  54. Sneath, P. H. A. 1956. Cultural and biochemical characteristics of the genus Chromobacterium. J. Gen. Microbiol. 15:70-98.  https://doi.org/10.1099/00221287-15-1-70
  55. Sorensen, K. N., Kim, K.-H. and Takemoto, J. Y. 1998. PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Appl. Environ. Microbiol. 64:226-230.  https://doi.org/10.1128/aem.64.1.226-230.1998
  56. Stokstad, E. 2019. Rapid apple decline has researchers stumped. Science 363:1259.  https://doi.org/10.1126/science.363.6433.1259
  57. Sule, S. and Seemuller, E. 1987. The role of ice formation in the infection of sour cherry leaves by Pseudomonas syringae pv. syringa. Phytopathology 77:173-177.  https://doi.org/10.1094/Phyto-77-173
  58. Toben, H., Mavridis, A. and Rudolph, K. W. E. 1989. Basal glume rot (Pseudomonas syringae pv. atrofaciens) on wheat and barley in FRG and resistance screening of wheat. Bull. OEPP/EPPO Bull. 19:119-125. https://doi.org/10.1111/j.1365-2338.1989.tb00137.x
  59. Tobes, R. and Pareja, E. 2006. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 7:62.  https://doi.org/10.1186/1471-2164-7-62
  60. Vicente, J. and Roberts, S. J. 2007. Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using repPCR. Eur. J. Plant Pathol. 117:383-392.  https://doi.org/10.1007/s10658-007-9107-y
  61. Wang, N., Lu, S.-E., Records, A. R. and Gross, D. C. 2006a. Characterization of the transcriptional activators SalA and SyrF, which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 188:3290-3298.  https://doi.org/10.1128/JB.188.9.3290-3298.2006
  62. Wang, N., Lu, S.-E., Wang, J., Chen, Z. J. and Gross, D. C. 2006b. The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. Mol. Plant-Microbe Interact. 19:257-269.  https://doi.org/10.1094/MPMI-19-0257
  63. Warren, G. and Wolber, P. 1991. Molecular aspects of microbial ice nucleation. Mol. Microbiol. 5:239-243.  https://doi.org/10.1111/j.1365-2958.1991.tb02104.x
  64. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.  https://doi.org/10.1128/jb.173.2.697-703.1991
  65. Xin, X. F., Kvitko, B. and He, S. Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16:316-328.  https://doi.org/10.1038/nrmicro.2018.17
  66. Young, J. M. 2010. Taxonomy of Pseudomonas syringae. J. Plant Pathol. 92:S5-S14. 
  67. Zhang, J. H., Quigley, N. B. and Gross, D. C. 1995. Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. J. Bacteriol. 177:4009-4020. https://doi.org/10.1128/jb.177.14.4009-4020.1995