DOI QR코드

DOI QR Code

Preparation and Photocatalyric Properties of Organic-Inorganic Hybrid Abaca Cellulose@Titanium Dioxide Composite

유-무기 하이브리드 형 Abaca 셀룰로오스/이산화 티타늄 복합체의 제조 및 이의 광촉매적 특성

  • Su-A, Kang (Department of Chemical Engineering, Hankyong National University) ;
  • Young-Ho, Kim (Department of Chemical Engineering, Hankyong National University)
  • Received : 2022.12.19
  • Accepted : 2023.01.11
  • Published : 2023.02.10

Abstract

In this study, an organic-inorganic hybrid composite of Abaca nanocellulose and titanium dioxide was prepared. Abaca nanocellulose was prepared by oxidizing Abaca cellulose using TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) as a catalyst. Titanium dioxide nanoparticles were prepared by the sol-gel method, and a composite was prepared by hybridizing them with nanocellulose. As a result of comparing the properties of the composite and its physical properties according to the change in manufacturing pH, the effect of pH was very large when combining nanocellulose and titanium dioxide, and the optimal bonding performance was shown at pH 8 in this experimental condition. In addition, the prepared composite showed photocatalytic properties, and the higher the content of titanium dioxide, the higher the hydrophilicity of the composite according to UV light irradiation.

본 연구에서는 Abaca 나노 셀룰로오스와 이산화 티타늄(TiO2)의 유-무기 하이브리드 복합체를 제조하였다. Abaca 나노 셀룰로오스는 Abaca 셀룰로오스를 산화시키는 방법으로 제조하였으며, 촉매로서 TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl)를 이용하였다. TiO2 나노입자는 sol-gel법으로 제조하였으며 이를 나노 셀룰로오스와 하이브리드(hybrid) 시켜 복합체를 제조하였다. 제조 pH 변화에 따른 복합체의 특성과 그의 물성을 비교해 본 결과, 나노 셀룰로오스와 이산화 티타늄 결합 시 pH의 영향이 매우 컸으며, 본 실험 조건에서 pH 8에서 최적의 결합성능을 나타냈다. 또한, 제조된 복합체는 광촉매 특성을 보였으며, 이산화 티타늄의 함량이 높을수록 UV광 조사에 따라 복합체의 친수성이 증가하였다.

Keywords

References

  1. S. S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., 28, 1539-1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  2. M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep., 28, 1-63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  3. S. Lim, J. Chang, M. Han, S, Hong, M. Um, and S. Hwang, Technology for hyper-structure control of organic/inorganic hybrid, Polym. Sci. Technol., 19, 530-540 (2008).
  4. A. Brakat and H. Zhu, Nanocellulose-graphene hybrids: Advanced functional materials as multifunctional sensing platform, Nano-micro Lett., 13, 1-37 (2021). https://doi.org/10.1007/s40820-020-00525-y
  5. D. Trache, V. K. Thakur, and R. Boukherroub, Cellulose nanocrystals/graphene hybrids a promising new class of materials for advanced applications, Nanomaterials, 10, 1523 (2020).
  6. R. T. Olsson, M. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Strom, L. A. Berglund, O. lkkala, J. Nogues, and U. K. Gedde, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, Nat. Nanotechnol., 5, 584-588 (2010). https://doi.org/10.1038/nnano.2010.155
  7. C. Ao, W. Yuan, J. Zhao, X. He, X. Zhang, Q. Li, T. Xia, and W. Zhang, and C. Lu, Superhydrophilic graphene oxide@ electro-spun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation, Carbohydr. Polym., 175, 216-222 (2017). https://doi.org/10.1016/j.carbpol.2017.07.085
  8. T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E, Abraham, T. Ben-Shalom, S. Lapidot, and O. Shoseyov, Nanocellulose, a tiny fiber with huge applications, Curr. Opin. Biotechnol., 39, 76-88 (2016). https://doi.org/10.1016/j.copbio.2016.01.002
  9. L. H. Nguyen, S. Naficy, R. Chandrawati, and F. Dehghani, Nanocellulose for sensing applications, Adv. Mater. Interfaces, 6, 1900424 (2019).
  10. N. Veronovski and M. Sfiligoj-Smole, Functionalization of lyocell fibers with TiO2, SiO2, and GLYMO, Fibers Polym., 11, 545-550 (2010). https://doi.org/10.1007/s12221-010-0545-5
  11. Y. Liu, B. Li, Y. Li, and H. Ocampo, Interfacial properties of nano TiO2 and cellulose paper coating, J. Bioresour. Bioprod., 1, 205-212 (2016).
  12. S. Tortorella, V. V. Buratti, M. Maturi, L. Sambri, M. C. Franchini, and E Locatelli, Surface-modified nanocellulose for application in biomedical engineering and nanomedicine: A review, Int. J. Nanomedicine, 15, 9909 (2020).
  13. R. Koppolu, J. Lahti, T. Abitbol, A. Swerin, J. Kuusipalo, and M. Toivakka, Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings, ACS Appl. Mater. Interfaces, 11, 11920-11927 (2019). https://doi.org/10.1021/acsami.9b00922
  14. X. Zheng and S. Fu, Reconstructing micro/nano hierarchical structures particle with nanocellulose for superhydrophobic coatings, Colloids Surf. A Physicochem. Eng. Asp., 560 171-179 (2019). https://doi.org/10.1016/j.colsurfa.2018.10.005
  15. J. Huang, S. Lyu, Z, Chen, S. Wang, and F. Fu, A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings, J. Colloid Interface Sci., 536, 349-362 (2019). https://doi.org/10.1016/j.jcis.2018.10.045
  16. X. Wang, F. Liu, Y. Li, W. Zhang, S. Bai, X, Zheng, J. Huan, G. Cao, T, Yang, and M. Wang, Development of a facile and bi-functional superhydrophobic suspension and its applications in superhydrophobic coatings and aerogels in high-efficiency oil-water separation, Green Chem., 22, 7424-7434 (2020). https://doi.org/10.1039/d0gc01834a
  17. A. Ahmed, B, Adak, T, Bansala, and S. Mukhopadhyay, Green solvent processed cellulose/graphene oxide nanocomposite films with superior mechanical, thermal, and ultraviolet shielding properties, ACS Appl. Mater. Interfaces, 12, 1687-1697 (2019).
  18. S. C. Shi, C. C. Wang, Y. C. Cheng, and Y. F. Lin, Surface characterization and tribological behavior of graphene-reinforced cellulose composites prepared by large-area spray coating on flexible substrate, Coatings, 10, 1176 (2020).
  19. J. Lu, L. Chen, and R. Song, Effects of SiO2 particle size on the corrosion resistance of fluoropolymer/SiO2 composite coatings, Surf. Eng., 35, 440-449 (2019). https://doi.org/10.1080/02670844.2018.1491511
  20. Y. Su, K. Li, L, Zhang, C. Wang, and Y. Zhang, Effect of the hydroxyapatite particle size on the properties of sprayed coating, Surf. Coat. Technol., 352, 619-626 (2018). https://doi.org/10.1016/j.surfcoat.2018.08.052
  21. C. Schutz, J. Sort, Z, Bacsik, V. Oliynyk, E. Pellicer, A. Fall, L. Wagberg, L, Berglund, L. Bergstrom, and G. Salazar-Alvarez, Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids, PLoS ONE, 7, e45828 (2012).
  22. X. Sun, M. Dong, Z. Guo, H. Zhang, J. Wang, P. Jia, T. Bu, Y. Liu, L. Li, and L. Wang, Multifunctional chitosan-copper-gallic acid based antibacterial nanocomposite wound dressing, Int. J. Biol. Macromol., 167, 10-22 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.153
  23. K. Zuo, J. Wu, S, Chen, X. Ji, and W. Wu, Superamphiphobic nanocellulose aerogels loaded with silica nanoparticles, Cellulose, 6, 9661-9671 (2019).
  24. J. Song and O. J. Rojas, Paper chemistry: Approaching super-hydrophobicity from cellulosic materials: A review, Nord. Pulp. Paper Res. J., 28, 216-238 (2013). https://doi.org/10.3183/NPPRJ-2013-28-02-p216-238
  25. S.-S. Hong, Synthesis of Ti-SBA-15 doped with lanthanide ions and their photocatalytic activity, Clean Technol., 26, 7-12 (2020).
  26. S.-S. Hong, Photocatalytic decomposition of rhodamine B over BiVO4 doped with samarium ion, Clean Technol., 27, 146-151 (2021). https://doi.org/10.7464/KSCT.2021.27.2.146
  27. H. W. Jeon, M. G. Jeong, B. Y. An, M. S. Hong, S. H. Seong, and G. D. Lee, Photocatalytic degradation of rhodamine b, methyl orange and methylene blue with CdS and CdZnS/ZnO catalysts under visible light irradiation, Clean Technol., 26, 311-320 (2020). https://doi.org/10.7464/KSCT.2020.26.4.311
  28. J. R. Ko, H. Y. Jun, and C.-H. Choi, Microfluidic assisted synthesis of Ag-ZnO nanocomposites for enhanced photocatalytic activity, Clean Technol., 27, 291-296 (2021).
  29. M. Kettunen, R. Sivennoinen, N. Houbenov, A, Nykanen, J. Ruokolainen, J. Sainio, V, Pore, M. Kemell, and T. Lindstrom, Photoswitchable superabsorbency based on nanocellulose aerogels, Adv. Funct. Mater., 21, 510-517 (2011). https://doi.org/10.1002/adfm.201001431
  30. S. D. Neelapala, A. K. Nair, and P. JagadeeshBabu, Synthesis and characterisation of TiO2 nanofibre/cellulose acetate nanocomposite ultrafiltration membrane, J. Exp. Nanosci., 12, 152-165 (2017). https://doi.org/10.1080/17458080.2017.1285446
  31. I. Ali, M. Suhail, Z. A, Alothman, and A. Alwarthan, Recent advances in syntheses, properties and applications of TiO2 nanostructures, RSC Adv., 8, 30125-30147 (2018). https://doi.org/10.1039/c8ra06517a
  32. O. Galkina, Functional hybrid bionanomaterials based on titanium dioxide and cellulose, possessing anitbacterial and drug delivery properties, Licentiate Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden (2015).
  33. M. Rathod, P. G. Moradeeya, S. Haldar, and S. Basha, Nanocellulose/TiO2 composites: Preparation, characterization and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media, Photochem. Photobiol. Sci., 17, 1301-1309 (2018). https://doi.org/10.1039/c8pp00156a
  34. U. M. Garusinghe, V. S. Raghuwanshi, W, Batchelor, and G. Garnier, Water resistant cellulose-titanium dioxide composites for photocatalysis, Sci. Rep., 8, 1-13 (2018). https://doi.org/10.1038/s41598-017-17765-5
  35. E. Farshchi, S. Pirsa, L. Roufegarinejad, M. Alizadeh, and M. Rezazad, Photocatalytic / biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles, Carbohydr. Polym., 216, 189-196 (2019). https://doi.org/10.1016/j.carbpol.2019.03.094
  36. S. S. Nair, J, Chen, A, Slabon, and A. P. Mathew, Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals, RSC Adv., 10, 37374-37381 (2020). https://doi.org/10.1039/d0ra05961g
  37. Y. Gao, X. Wang, X, Li, and H. Dai, An antibacterial composite film based on cellulose acetate / TiO2 nanoparticles, New J. Chem., 44, 20751-20758 (2020). https://doi.org/10.1039/d0nj04374e
  38. W. S. Tung, and W. A. Daoud, Self-cleaning fibers via nanotechnology: A virtual reality, J. Mater. Chem., 21, 7858-7869 (2011). https://doi.org/10.1039/c0jm03856c