Acknowledgement
This paper was supported by Konkuk University in 2020.
References
- Major P, Thiele EA (2007) Seizures in children: determining the variation. Pediatr Rev 28:363-371. https://doi.org/10.1542/pir.28-10-363
- Shinnar S et al (2012) MRI abnormalities following febrile status epilepticus in children: the FEBSTAT study. Neurology 79:871-877. https://doi.org/10.1212/WNL.0b013e318266fcc5
- Lewis DV et al (2014) Hippocampal sclerosis after febrile status epilepticus: the FEBSTAT study. Ann Neurol 75:178-185. https://doi.org/10.1002/ana.24081
- Sharawat IK et al (2016) Evaluation of risk factors associated with first episode febrile seizure. J Clin Diagn Res 10:SC10-SC13. https://doi.org/10.7860/JCDR/2016/18635.7853
- Christensen KJ et al (2021) Birth characteristics and risk of febrile seizures. Acta Neurol Scand 144:51-57. https://doi.org/10.1111/ane.13420
- Canpolat M et al (2018) Investigating the prevalence of febrile convulsion in Kayseri, Turkey: an assessment of the risk factors for recurrence of febrile convulsion and for development of epilepsy. Seizure 55:36-47. https://doi.org/10.1016/j.seizure.2018.01.007
- Seinfeld DS, Pellock JM (2013) Recent research on febrile seizures: a review. J Neurol Neurophysiol. https://doi.org/10.4172/2155-9562.1000165
- Ellenberg JH, Nelson KB (1978) Febrile seizures and later intellectual performance. Arch Neurol 35:17-21. https://doi.org/10.1001/archneur.1978.00500250021004
- Verity CM, Greenwood R, Golding J (1998) Long-term intellectual and behavioral outcomes of children with febrile convulsions. N Engl J Med 338:1723-1728. https://doi.org/10.1056/NEJM199806113382403
- Arico M et al (2020) ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: a systematic review. Epilepsy Behav 112:107448. https://doi.org/10.1016/j.yebeh.2020.107448
- Bertelsen EN et al (2016) Childhood epilepsy, febrile seizures, and subsequent risk of ADHD. Pediatrics 138:e20154654. https://doi.org/10.1542/peds.2015-4654
- Kim EH et al (2014) Attention-deficit/hyperactivity disorder and attention impairment in children with benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav 37:54-58. https://doi.org/10.1016/j.yebeh.2014.05.030
- Ku YC et al (2014) Risk of subsequent attention deficit-hyperactivity disorder in children with febrile seizures. Arch Dis Child 99:322-326. https://doi.org/10.1136/archdischild-2013-304647
- Tu YF et al (2014) Febrile convulsions increase risk of Tourette syndrome. Seizure 23:651-656. https://doi.org/10.1016/j.seizure.2014.05.005
- Alese OO et al (2020) Prolonged febrile seizure history exacerbates seizure severity in a pentylenetetrazole rat model of epilepsy. Brain Res Bull 155:137-144. https://doi.org/10.1016/j.brainresbull.2019.11.021
- Patterson KP et al (2015) Rapid, coordinate inflammatory responses after experimental febrile status epilepticus: implications for epileptogenesis. eNeuro. https://doi.org/10.1523/ENEURO.0034-15.2015
- Crespo M, Leon-Navarro DA, Martin M (2021) Glutamatergic system is affected in brain from an hyperthermia-induced seizures rat model. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01041-2
- Kasahara Y, Ikegaya Y, Koyama R (2018) Neonatal seizure models to study epileptogenesis. Front Pharmacol 9:385. https://doi.org/10.3389/fphar.2018.00385
- Sanon NT, Desgent S, Carmant L (2012) Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology. Epilepsy Res Treat 2012:342928. https://doi.org/10.1155/2012/342928
- Dube CM et al (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30:7484-7494. https://doi.org/10.1523/Jneurosci.0551-10.2010
- Eun BL et al (2015) Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav 5:e00348. https://doi.org/10.1002/brb3.348
- Lemmens EM et al (2005) Gender differences in febrile seizure-induced proliferation and survival in the rat dentate gyrus. Epilepsia 46:1603-1612. https://doi.org/10.1111/j.1528-1167.2005.00252.x
- Lugo JN, Swann JW, Anderson AE (2014) Early-life seizures result in deficits in social behavior and learning. Exp Neurol 256:74-80. https://doi.org/10.1016/j.expneurol.2014.03.014
- Auvin S et al (2009) Inflammation in rat pups subjected to short hyperthermic seizures enhances brain long-term excitability. Epilepsy Res 86:124-130. https://doi.org/10.1016/j.eplepsyres.2009.05.010
- Westmark CJ et al (2008) Seizure susceptibility and mortality in mice that over-express amyloid precursor protein. Int J Clin Exp Pathol 1:157-168. PMID: 18784809 CAS Google Scholar
- Kraeuter A-K, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice, in pre-clinical models. Springer, Berlin, pp 105-111. https://doi.org/10.1007/978-1-4939-8994-2_10
- Wolf A et al (2016) A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS ONE 11:e0147733. https://doi.org/10.1371/journal.pone.0147733
- Bak J et al (2017) Effect of rotation preference on spontaneous alternation behavior on Y maze and introduction of a new analytical method, entropy of spontaneous alternation. Behav Brain Res 320:219-224. https://doi.org/10.1016/j.bbr.2016.12.011
- Yankelevitch-Yahav R et al (2015) The forced swim test as a model of depressive-like behavior. Jove-J Vis Exp 97:e52587. https://doi.org/10.3791/52587
- Shiotsuki H et al (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189:180-185. https://doi.org/10.1016/j.jneumeth.2010.03.026
- Yamashita M et al (2013) Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology 227:741-749. https://doi.org/10.1007/s00213-013-3009-9
- Chen X et al (2015) Impairment of oligodendroglia maturation leads to aberrantly increased cortical glutamate and anxiety-like behaviors in juvenile mice. Front Cell Neurosci 9:467. https://doi.org/10.3389/fncel.2015.00467
- Kim S, Lee D (2011) Prefrontal cortex and impulsive decision making. Biol Psychiatry 69:1140-1146. https://doi.org/10.1016/j.biopsych.2010.07.005
- Semple BD et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106-107:1-16. https://doi.org/10.1016/j.pneurobio.2013.04.001
- Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244-248. https://doi.org/10.1016/j.lfs.2015.10.025
- Brenhouse HC, Schwarz JM (2016) Immunoadolescence: Neuroimmune development and adolescent behavior. Neurosci Biobehav Rev 70:288-299. https://doi.org/10.1016/j.neubiorev.2016.05.035
- Patros CH et al (2016) Choice-impulsivity in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a meta-analytic review. Clin Psychol Rev 43:162-174. https://doi.org/10.1016/j.cpr.2015.11.001
- Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348-361. https://doi.org/10.1007/pl00005481
- Dalley JW et al (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250-260. https://doi.org/10.1016/j.pbb.2007.12.021
- Matsuoka Y et al (2005) Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci USA 102:16066-16071. https://doi.org/10.1073/pnas.0504908102
- Gershon J (2002) A meta-analytic review of gender differences in ADHD. J Atten Disord 5:143-154. https://doi.org/10.1177/108705470200500302
- Castelhano AS et al (2010) Social play impairment following status epilepticus during early development. J Neural Transm (Vienna) 117:1155-1160. https://doi.org/10.1007/s00702-010-0460-1
- Desgent S et al (2012) Early-life stress is associated with gender-based vulnerability to epileptogenesis in rat pups. PLoS ONE. https://doi.org/10.1371/journal.pone.0042622
- Akman O, Moshe SL, Galanopoulou AS (2014) Sex-specific consequences of early life seizures. Neurobiol Dis 72:153-166. https://doi.org/10.1016/j.nbd.2014.05.021
- Bernard PB et al (2013) Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Neurobiol Dis 59:1-17. https://doi.org/10.1016/j.nbd.2013.06.013
- Cornejo BJ et al (2007) A single episode of neonatal seizures permanently alters glutamatergic synapses. Ann Neurol 61:411-426. https://doi.org/10.1002/ana.21071
- Karnam HB et al (2009) Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol 217:378-387. https://doi.org/10.1016/j.expneurol.2009.03.028
- Fliers EA et al (2010) Undertreatment of motor problems in children with ADHD. Child Adolesc Mental Health 15:85-90. https://doi.org/10.1111/j.1475-3588.2009.00538.x
- Bevilacqua L, Goldman D (2013) Genetics of impulsive behaviour. Philos Trans R Soc Lond B Biol Sci 368:20120380. https://doi.org/10.1098/rstb.2012.0380
- Schreiber R, De Vry J (1993) 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog Neuropsychopharmacol Biol Psychiatry 17:87-104. https://doi.org/10.1016/0278-5846(93)90034-p
- Chiavegatto S et al (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci USA 98:1277-1281. https://doi.org/10.1073/pnas.98.3.1277
- Angoa-Perez M et al (2012) Genetic depletion of brain 5HT reveals a common molecular pathway mediating compulsivity and impulsivity. J Neurochem 121:974-984. https://doi.org/10.1111/j.1471-4159.2012.07739.x
- Jupp B et al (2013) Dopaminergic and GABA-ergic markers of impulsivity in rats: evidence for anatomical localisation in ventral striatum and prefrontal cortex. Eur J Neurosci 37:1519-1528. https://doi.org/10.1111/ejn.12146
- Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329-342. https://doi.org/10.1007/s002130050410
- Robbins T, Dalley J (2017) Impulsivity, risky choice, and impulse control disorders: animal models. Decision neuroscience. Elsevier, Oxford, pp 81-93. https://doi.org/10.1016/B978-0-12-805308-9.00007-5 Chapter Google Scholar
- Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379-395. https://doi.org/10.1016/j.cpr.2006.01.001
- Toczek MT et al (2003) PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60:749-756. https://doi.org/10.1212/01.wnl.0000049930.93113.20
- Merlet I et al (2004) 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain 127:900-913. https://doi.org/10.1093/brain/awh109
- Richerson GB, Buchanan GF (2011) The serotonin axis: shared mechanisms in seizures, depression, and SUDEP. Epilepsia 52(Suppl 1):28-38. https://doi.org/10.1111/j.1528-1167.2010.02908.x
- Assem-Hilger E et al (2010) Central serotonin 1A receptor binding in temporal lobe epilepsy: a [carbonyl-11C] WAY-100635 PET study. Epilepsy Behav 19:467-473. https://doi.org/10.1016/j.yebeh.2010.07.030
- Martinez A et al (2013) The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy. Neurology 80:1465-1471. https://doi.org/10.1212/WNL.0b013e31828cf809
- Economidou D et al (2012) Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology 37:2057-2066. https://doi.org/10.1038/npp.2012.53
- Krause J (2008) SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert Rev Neurother 8:611-625. https://doi.org/10.1586/14737175.8.4.611
- Brown AB et al (2010) Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 153B:365-375. https://doi.org/10.1002/ajmg.b.31022
- van der Kooij MA, Glennon JC (2007) Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 31:597-618. https://doi.org/10.1016/j.neubiorev.2006.12.002
- Schubert J et al (2014) Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 46:1327-1332. https://doi.org/10.1038/ng.3130
- Feenstra B et al (2014) Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet 46:1274-1282. https://doi.org/10.1038/ng.3129
- Skotte L et al (2022) Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain. https://doi.org/10.1093/brain/awab260
- Kasahara Y et al (2019) The pharmacological assessment of GABAA receptor activation in experimental febrile seizures in mice. eNeuro. https://doi.org/10.1523/ENEURO.0429-18.2019
- Rakgantsho C, Mabandla MV (2019) Acetylcholine receptor agonist effect on seizure activity and GABAergic mechanisms involved in prolonged febrile seizure development in an animal model. Brain Res Bull 149:203-207. https://doi.org/10.1016/j.brainresbull.2019.04.022
- Hayes DJ et al (2014) Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 39:1921-1932. https://doi.org/10.1111/ejn.12485
- Murphy ER et al (2012) Impulsive behaviour induced by both NMDA receptor antagonism and GABA(A) receptor activation in rat ventromedial prefrontal cortex. Psychopharmacology 219:401-410. https://doi.org/10.1007/s00213-011-2572-1
- Keele NB (2005) The role of serotonin in impulsive and aggressive behaviors associated with epilepsy-like neuronal hyperexcitability in the amygdala. Epilepsy Behav 7:325-335. https://doi.org/10.1016/j.yebeh.2005.06.014
- Pape HC et al (2010) Neuropeptide S: a transmitter system in the brain regulating fear and anxiety. Neuropharmacology 58:29-34. https://doi.org/10.1016/j.neuropharm.2009.06.001
- Reinscheid RK, Xu YL (2005) Neuropeptide S as a novel arousal promoting peptide transmitter. FEBS J 272:5689-5693. https://doi.org/10.1111/j.1742-4658.2005.04982.x