DOI QR코드

DOI QR Code

A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges

기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안

  • ;
  • ;
  • ;
  • 이경현 (부경대학교 컴퓨터공학부)
  • Received : 2022.08.02
  • Accepted : 2022.09.12
  • Published : 2023.01.31

Abstract

Recommendation systems are frequently used by users to generate intelligent automatic decisions. In the study of movie recommendation system, the existing approach uses largely collaboration and content-based filtering techniques. Collaborative filtering considers user similarity, while content-based filtering focuses on the activity of a single user. Also, mixed filtering approaches that combine collaborative filtering and content-based filtering are being used to compensate for each other's limitations. Recently, several AI-based similarity techniques have been used to find similarities between users to provide better recommendation services. This paper aims to provide the prospective expansion by deriving possible solutions through the analysis of various existing movie recommendation systems and their challenges.

추천 시스템은 지능적인 자동 결정을 생성하기 위해 사용자가 자주 사용한다. 영화 추천 시스템의 연구에서, 기존 접근 방식은 협업 및 콘텐츠 기반 필터링 기술을 사용한다. 협업 필터링은 사용자 유사성을 고려하는 반면, 콘텐츠 기반 필터링은 단일 사용자의 활동에 중점을 두고 있다. 또한 협업 필터링과 콘텐츠 기반 필터링을 결합한 혼합 필터링 접근법은 서로의 한계를 보완하기 위해 사용되고 있다. 최근엔 더 나은 추천 서비스를 제공하기 위해 사용자 간의 유사성을 찾는데 몇 가지 AI 기반 유사성 기법을 사용하고 있다. 본 논문은 기존의 다양한 영화 추천 시스템과 문제점 분석을 통해 가능한 해결책을 도출하여 유용한 확장 방안을 제공하는 것을 목표로 한다.

Keywords

Acknowledgement

This work was supported by a Research Grant of Pukyong National University (2021).

References

  1. G. Suganeshwari and S. P. Syed Ibrahim, "A survey on collaborative filtering based recommendation system," in Proceedings of the 3rd international symposium on big data and cloud computing challenges (ISBCC-16'). Springer, Cham, pp.503-518, 2016.
  2. S. Rastogi, D. Agarwal, J. Jain, and K. P. Arjun, "Demographic Filtering for Movie Recommendation System Using Machine Learning," in Proceedings of International Conerence on Recent Trends in Computing. Springer, Singapore, pp.549-557, 2022.
  3. J. Shu, X. Shen, H. Liu, B. Yi, and Z. Zhang, "A content-based recommendation algorithm for learning resources," Multimedia Systems, Vol.24, No.2, pp.163-173, 2018. https://doi.org/10.1007/s00530-017-0539-8
  4. M. K. Kharita, A. Kumar, and P. Singh, "Item-based collaborative filtering in movie recommendation in real time," in 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). IEEE, pp.340-342, 2018.
  5. S. K. Huwanshi, and R. K. Pateriya, "Collaborative filtering techniques in recommendation systems," Data, Engineering and Applications. Springer, Singaporre, pp.11-21, 2019.
  6. R. Sujithra Alias Kanmani, B. Surendiran, and S. P. Ibrahim, "Recency augmented hybrid collaborative movie recommendation system," International Journal of Information Technology, Vol.13, No.5, pp.1829-1836, 2021. https://doi.org/10.1007/s41870-021-00769-w
  7. N. Pereira, and S. L. Varma, "Financial planning recommendation system using content-based collaborative and demographic filtering," In Smart Innovations in Communication and Computational Sciences, Springer, Singapore, pp.141-151, 2019.
  8. F. Yang, "A hybrid recommendation algorithm-based intelligent business recommendation system," Journal of Discrete Mathematical Sciences and Cryptography, Vol.21, No.6, pp.1317-1322, 2018. https://doi.org/10.1080/09720529.2018.1526408
  9. S. Sharma, V. Rana, and M. Malhotra, "Automatic recommendation system based on hybrid filtering algorithm," Education and Information Technologies, Vol.27, No.2, pp.1523-1538, 2022. https://doi.org/10.1007/s10639-021-10643-8
  10. Y. Wang et al., "An enhanced multi-modal recommendation based on alternate training with knowledge graph representation," IEEE Access, Vol.8, pp.213012-213026, 2020. https://doi.org/10.1109/ACCESS.2020.3039388
  11. N. F. AL-Bakri and S. H. Hashim, "Collaborative filtering recommendation model based on k-means clustering," Al-Nahrain Journal of Science, Vol.22, No.1, pp.74-79, 2019. https://doi.org/10.22401/ANJS.22.1.10
  12. S. S. Choudhury, S. N. Mohanty, and A. K. Jagadev, "Multimodal trust based recommender system with machine learning approaches for movie recommendation," International Journal of Information Technology, Vol.13, No.2, pp.475-482, 2021. https://doi.org/10.1007/s41870-020-00553-2
  13. Q. Zhang, J. Lu, and Y. Jin, "Artificial intelligence in recommender systems," Complex & Intelligent Systems, Vol.7, No.1, pp.439-457, 2021. https://doi.org/10.1007/s40747-020-00212-w
  14. K. Patel and H. B. Patel, "A state-of-the-art survey on recommendation system and prospective extensions," Computers and Electronics in Agriculture, Vol.178, pp.105779, 2020.
  15. M. Goyani and N. Chaurasiya, "A review of movie recommendation system: Limitations, survey and challenges," ELCVIA: Electronic Letters on Computer Vision and Image Analysis, Vol.19, No.3, pp.18-37, 2020. https://doi.org/10.5565/rev/elcvia.1232
  16. W. C. Kang and J. McAuley, "Candidate generation with binary codes for large-scale top-n recommendation," in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp.1523-1532, 2019.
  17. Y. Deldjoo, M. Schedl, P. Cremonesi, and G. Pasi, "Recommender systems leveraging multimedia content," ACM Computing Surveys (CSUR), Vol.53, No.5, pp.1-38, 2020. https://doi.org/10.1145/3407190
  18. P. Covington, J. Adams, and E. Sargin, "Deep neural networks for youtube recommendations," in Proceedings of the 10th ACM Conference on Recommender Systems, pp.191-198, 2016.
  19. C. Chen, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, "Efficient neural matrix factorization without sampling for recommendation," ACM Transactions on Information Systems (TOIS), Vol.38, No.2, pp.1-28, 2020. https://doi.org/10.1145/3373807
  20. B. Zhu, F. Ortega, J. Bobadilla, and A. Gutierrez, "Assigning reliability values to recommendations using matrix factorization," Journal of Computational Science, Vol.26 pp.165-177, 2018. https://doi.org/10.1016/j.jocs.2018.04.009
  21. J. Bai et al., "Personalized bundle list recommendation," in The World Wide Web Conference, pp.60-71, 2019.
  22. X. Xin, X. He, Y. Zhang, Y. Zhang, and J, Jose, "Relational collaborative filtering: Modeling multiple item relations for recommendation," in Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval, pp.125-134, 2019.
  23. J. Feng, Z. Xia., X. Feng, and J. Peng, "RBPR: A hybrid model for the new user cold start problem in recommender systems," Knowledge-Based Systems, Vol.214, pp.106732, 2021.
  24. D. Jiang, Z. Liu, L. Zheng, and J. Chen, "Factorization meets neural networks: A scalable and efficient recommender for solving the new user problem," IEEE Access, Vol.8, pp.18350-18361, 2020. https://doi.org/10.1109/access.2020.2968297
  25. V. W. Anelli et al., "Elliot: A comprehensive and rigorous framework for reproducible recommender systems evaluation," in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.2405-2414, 2021.
  26. L. Zhang, Q. Wei, L. Zhang, B. Wang, and W. H. Ho, "Diversity balancing for two-stage collaborative filtering in recommender systems," Applied Sciences, Vol.10, No.4, pp.1257, 2020.
  27. Y. Cao, X. Chen, L. Yao, X. Wang, and W. E. Zhang, "Adversarial attacks and detection on reinforcement learning-based interactive recommender systems," In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.1669-1672, 2020.
  28. F. Rezaimehr and C. Dadkhah, "A survey of attack detection approaches in collaborative filtering recommender systems," Artificial Intelligence Review, Vol.54, No.3, pp.2011-2066, 2021. https://doi.org/10.1007/s10462-020-09898-3
  29. U. Javed et al., "A review of content-based and context-based recommendation systems," International Journal of Emerging Technologies in Learning (iJET), Vol.16, No.3, pp.274- 306, 2021. https://doi.org/10.3991/ijet.v16i03.18851
  30. D. Jannach, A. Manzoor, W. Cai, and L. Chen, "A survey on conversational recommender systems," ACM Computing Surveys (CSUR), Vol.54, No.5, pp.1-36, 2021. https://doi.org/10.1145/3453154
  31. F. Narducci, P. Basile, M. de Gemmis, P. Lops, and G. Semeraro, "An investigation on the user interaction modes of conversational recommender systems for the music domain," User Modeling and User-Adapted Interaction, Vol.30, No.2, pp.251-284, 2020. https://doi.org/10.1007/s11257-019-09250-7
  32. I. Fernandez-Tobias, M. Braunhofer, M. Elahi, F. Ricci, and I. Cantador, "Alleviating the new user problem in collaborative filtering by exploiting personality information," User Modeling and User-Adapted Interaction, Vol.26, No.2, pp.221-255, 2016. https://doi.org/10.1007/s11257-016-9172-z
  33. G. Shani and A. Gunawardana, "Evaluating recommendation systems," in Recommender Systems Handbook1st ed. USA: Springer, ch. 8, pp.257297, 2011.
  34. G. Guo et al., "Resolving data sparsity by multi-type auxiliary implicit feedback for recommender systems," Knowledge-Based Systems, Vol.138, pp.202-207, 2017. https://doi.org/10.1016/j.knosys.2017.10.005
  35. N. F. Al-Bakri and S. H. Hashim, "Reducing data sparsity in recommender systems," Al-Nahrain Journal of Science, Vol.2, No.2, pp.138-147, 2018. https://doi.org/10.22401/JNUS.21.2.20
  36. S. Ahmadian, M. Afsharchi, and M. Meghdadi, "A novel approach based on multi-view reliability measures to alleviate data sparsity in recommender systems," Multimedia Tools and Applications, Vol.78, No.13, pp.17763-17798, 2019.
  37. G. Guo, "Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems," in Proceedings of the 7th ACM Conference on Recommender Systems, pp.451-454, 2013.
  38. Idrissi, Nouhaila, and Ahmed Zellou, "A systematic literature review of sparsity issues in recommender systems," Social Network Analysis and Mining, Vol.10, No.1, pp.1-23, 2020. https://doi.org/10.1007/s13278-019-0612-8
  39. J. F. G. da Silva, N. N. de Moura Junior, and L. P. Caloba, "Effects of data sparsity on recommender systems based on collaborative filtering," International Joint Conference on Neural Networks (IJCNN), IEEE, pp.1-8, 2018.
  40. G. Guo, "Improving the performance of recommender systems by alleviating the data sparsity and cold start problems," Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
  41. X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang "A hybrid collaborative filtering model with deep structure for recommender systems," Proceedings of the AAAI Conference on Artificial Intelligence, Vol.31, No.1, 2017.
  42. D. Anand and K. K. Bharadwaj, "Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities," Expert Systems with Applications, Vol.38, No.5, pp.5101-5109, 2011. https://doi.org/10.1016/j.eswa.2010.09.141
  43. L. Sweeney, "k-anonymity: A model for protecting privacy," International Journal of Uncertainty, Fuzziness and Knowledge-based System, Vol.10, No.5, pp.557-570, 2002. https://doi.org/10.1142/S0218488502001648
  44. B. C. Fung, K. Wang, and S. Y. Philip, "Anonymizing classification data for privacy preservation," IEEE Transactions on Knowledge and Data Engineering, Vol.19, No.5, pp.711-725, 2007. https://doi.org/10.1109/TKDE.2007.1015
  45. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, "l-diversity: Privacy beyond k-anonymity," ACM Transactions on Knowledge Discovery from Data (TKDD), Vol.1, No.1, pp.3-es, 2007.
  46. N. Li, T. Li, and S. Venkatasubramanian, "t-closeness: Privacy beyond k-anonymity and l-diversity," In IEEE 23rd International Conference on Data Engineering, IEEE, pp.106-115, 2006.
  47. N. Li, T. Li, and S. Venkatasubramanian, "Closeness: A new privacy measure for data publishing," IEEE Transactions on Knowledge and Data Engineering, Vol.22, No.7, pp.943-956, 2009. https://doi.org/10.1109/TKDE.2009.139
  48. V. W. Anelli et al., "Pursuing privacy in recommender systems: The view of users and researchers from regulations to applications," In Fifteenth ACM Conference on Recommender Systems, pp.838-841, 2021.
  49. R. Bosri, M. S. Rahman, M. Z. A. Bhuiyan, and A. Al Omar, "Integrating blockchain with artificial intelligence for privacy-preserving recommender systems," IEEE Transactions on Network Science and Engineering, Vol.8, No.2, pp.1009-1018, 2020.
  50. L. Belli et al., "Privacy-aware recommender systems challenge on twitter's home timeline," arXiv preprint arXiv, pp.13715, 2020.
  51. I. Mazeh and E. Shmueli, "A personal data store approach for recommender systems: Enhancing privacy without sacrificing accuracy," Expert Systems with Applications, Vol.139, pp.112858, 2020.
  52. X. Chi, C. Yan, H. Wang, W. Rafique, and L. Qi, "Amplified locality-sensitive hashing-based recommender systems with privacy protection," Concurrency and Computation: Practice and Experience, Vol.34, No.14, pp.e5681, 2022.
  53. T. B. Ogunseyi, T. Bo, and C. Yang, "A privacy-preserving framework for cross-domain recommender systems," Computers & Electrical Engineering, Vol.93, pp.107213, 2021.
  54. D. Pramod, "Privacy-preserving techniques in recommender systems: State-of-the-art review and future research agenda," Data Technologies and Applications ahead-of-print, 2022.
  55. M. Srifi, A. Oussous, A. Ait Lahcen, and S. Mouline, "Recommender systems based on collaborative filtering using review texts-a survey," Information, Vol.11, No.6, pp.317, 2020.
  56. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Application of dimensionality reduction in recommender system-a case study," Minnesota Univ Minneapolis Dept of Computer Science, 2000.
  57. B. M. Sarwar, "Sparsity, scalability, and distribution in recommender systems," Ph.D. disertation, University of Minnesota, 2001.
  58. N. Bhalse and R. Thakur, "Algorithm for movie recommendation system using collaborative filtering," Materials Today: Proceedings, 2021.
  59. S. Sharma, V. Rana, and M. Malhotra, "Automatic recommendation system based on hybrid filtering algorithm," Education and Information Technologies, Vol.27, No.2, pp.1523-1538, 2022. https://doi.org/10.1007/s10639-021-10643-8
  60. B. Yi et al., "Deep matrix factorization with implicit feedback embedding for recommendation system," IEEE Transactions on Industrial Informatics, Vol.15, No.8, pp.4591-4601, 2019. https://doi.org/10.1109/TII.2019.2893714
  61. F. Yang, "A hybrid recommendation algorithm-based intelligent business recommendation system," Journal of Discrete Mathematical Sciences and Cryptography, Vol.21, No.6, pp.1317-1322, 2018. https://doi.org/10.1080/09720529.2018.1526408
  62. L. Jiang, Y. Cheng, L. Yang, J. Li, H. Yan, and X. Wang, "A trust-based collaborative filtering algorithm for E-commerce recommendation system," Journal of Ambient Intelligence and Humanized Computing, Vol.10, No.8, pp.3023-3034, 2019. https://doi.org/10.1007/s12652-018-0928-7
  63. S. Amara and R. R. Subramanian, "Collaborating personalized recommender system and content-based recommender system using TextCorpus," 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, pp.105-109, 2020.
  64. C. S. Wang, B. S. Chen, and J. H. Chiang, "TDD-BPR: The topic diversity discovering on Bayesian personalized ranking for personalized recommender system," Neurocomputing, Vol.441, pp.202-213, 2021. https://doi.org/10.1016/j.neucom.2021.02.016
  65. I. Kangas, M. Schwoerer, and L. J. Bernardi, "Recommender systems for personalized user experience: lessons learned at Booking. com," In Fifteenth ACM Conference on Recommender Systems, pp.583-586, 2021.
  66. J. Bobadilla, F. Ortega, A. Gutierrez, and S. Alonso, "Classification-based deep neural network architecture for collaborative filtering recommender systems," 2020.
  67. U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam, and S. Luo, "A review of content-based and context-based recommendation systems," International Journal of Emerging Technologies in Learning (iJET), Vol.16, No.3, pp.274-306, 2021. https://doi.org/10.3991/ijet.v16i03.18851
  68. R. Singla, S. Gupta, A. Gupta, and D. K. Vishwakarma, "FLEX: a content based movie recommender," In International Conference for Emerging Technology (INCET), IEEE, pp.1-4, 2020.
  69. L. David, A. Thakkar, R. Mercado, and O. Engkvist, "Molecular representations in AI-driven drug discovery: A review and practical guide," Journal of Cheminformatics, Vol.12, No.1, pp.1-22, 2020. https://doi.org/10.1186/s13321-019-0407-y