DOI QR코드

DOI QR Code

군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법

Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot

  • 김관혁 (한국기술교육대학교 컴퓨터공학과) ;
  • 김한진 (한국기술교육대학교 컴퓨터공학과) ;
  • 권준형 (한국기술교육대학교 컴퓨터공학과) ;
  • 하범수 (한국기술교육대학교 컴퓨터공학과) ;
  • 허석행 (LIG넥스원 무인체계연구소) ;
  • 구지훈 (LIG넥스원 무인체계연구소) ;
  • 손호정 (LIG넥스원 무인체계연구소 ) ;
  • 김원태 (한국기술교육대학교 컴퓨터공학부)
  • 투고 : 2022.11.23
  • 심사 : 2022.12.04
  • 발행 : 2023.01.31

초록

로봇은 군사 분야로까지 활용 범위를 넓히며 다가올 미래전에서 감시경계, 적군 탐지 등 중요한 임무를 맡게 될 것으로 전망된다. 군집 로봇은 다수라는 장점으로 단일 로봇이 수행하기 어렵거나 오랜 시간이 소요된 임무를 보다 효율적으로 수행할 수 있다. 상호 간 인지 및 협업이 필수인 군집 로봇은 방대한 데이터를 주고 받으며, 이로 인해 SW의 검증이 점점 더 어려워지고 있다. 임무 검증의 신뢰성을 높이기 위해 사용하는 Hardware-in-the-loop simulation은 복잡한 군집 로봇의 SW 검증을 가능하게 하나, HILS 장치와 시뮬레이터 간 주고 받는 검증 데이터의 양이 검증 대상 시스템 수에 따라 기하급수적으로 증가하여 통신 과부하가 발생할 수 있다. 본 논문에서는 군집 로봇의 임무 검증에서 발생하는 통신 과부하 문제를 해소하기 위해 디지털 트윈 기반의 통신 최적화 기법을 제안한다. 제안하는 Digital Twin based Multi HILS Framework 하에서 Network DT은 Network Controller 알고리즘을 통해 임무 시나리오에 따라 각 로봇에게 네트워크 자원을 효율적으로 할당할 수 있으며, 군집에 참여하는 개별 로봇들이 요구하는 Sensor Generation Rate를 모두 만족시킬 수 있음을 확인하였다. 또한 데이터 전송에 대한 실험 결과 패킷 손실 비율을 기존 15.7%에서 약 0.2%로 감소시킬 수 있었다.

Robots are expected to expand their scope of application to the military field and take on important missions such as surveillance and enemy detection in the coming future warfare. Swarm robots can perform tasks that are difficult or time-consuming for a single robot to be performed more efficiently due to the advantage of having multiple robots. Swarm robots require mutual recognition and collaboration. So they send and receive vast amounts of data, making it increasingly difficult to verify SW. Hardware-in-the-loop simulation used to increase the reliability of mission verification enables SW verification of complex swarm robots, but the amount of verification data exchanged between the HILS device and the simulator increases exponentially according to the number of systems to be verified. So communication overload may occur. In this paper, we propose a digital twin-based communication optimization technique to solve the communication overload problem that occurs in mission verification of swarm robots. Under the proposed Digital Twin based Multi HILS Framework, Network DT can efficiently allocate network resources to each robot according to the mission scenario through the Network Controller algorithm, and can satisfy all sensor generation rates required by individual robots participating in the group. In addition, as a result of an experiment on packet loss rate, it was possible to reduce the packet loss rate from 15.7% to 0.2%.

키워드

과제정보

본 연구는 2021년도 한국기술교육대학교 교원연구제 연구비 지원과 방위산업기술지원센터의 지원(사업명: 초소형 생체모방로봇용SW프레임워크 기술 개발, 계약번호: UC200010D), 과학기술정보통신부 및 정보통신산업진흥원(NIPA-D0335-22-1022)의 지원하에 수행되었음.

참고문헌

  1. J. Troccaz, G. Dagnino, and G. Z. Yang, "Frontiers of medical robotics: From concept to systems to clinical translation," Annual Review of Biomedical Engineering, Vol.21, pp.193-218,
  2. T. C. van Riet, K. T. C. J. Sem, J. P. T. Ho, R. Spijker, J. Kober, and J. de Lange, "Robot technology in dentistry, part one of a systematic review: Literature characteristics," Dental Materials, Vol.37, No.8, pp.1217-1226, 2021. https://doi.org/10.1016/j.dental.2021.06.001
  3. J. P. Vasconez, G. A. Kantor, and F. A. A. Cheein, "Human-robot interaction in agriculture: A survey and current challenges," Biosystems Engineering, Vol.179, pp.35-48, https://doi.org/10.1016/j.biosystemseng.2018.12.005
  4. E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and G. Rosati, "Human-robot collaboration in manufacturing applications: A review," Robotics, Vol.8, No.4, 100,
  5. E. Tuci, M. H. Alkilabi, and O. Akanyeti, "Cooperative object transport in multi-robot systems: A review of the state-of-the-art," Frontiers in Robotics and AI, Vol.5, 59, 2018.
  6. O. Hamed and M. Hamlich, "Improvised multi-robot cooperation strategy for hunting a dynamic target," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), IEEE, 2020.
  7. X. Zhou, W. Wang, T. Wang, Y. Lei, and F. Zhong, "Bayesian reinforcement learning for multi-robot decentralized patrolling in uncertain environments," IEEE Transactions on Vehicular Technology, Vol.68, No.12, pp.11691-11703, 2019. https://doi.org/10.1109/TVT.2019.2948953
  8. S. H. Arul, A. J. Sathyamoorthy, S. Patel, M. Otte, H. Xu, M. C. Lin, and D. Manocha, "LSwarm: Efficient collision avoidance for large swarms with coverage constraints in complex urban scenes," IEEE Robotics and Automation Letters, Vol.4, No.4, pp.3940-3947,
  9. M. Li, K. Lu, H. Zhu, M. Chen, S. Mao, and B. Prabhakaran, "Robot swarm communication networks: architectures, protocols, and applications," 2008 Third International Conference on Communications and Networking in China. IEEE, 2008.
  10. T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, "Time-sensitive networking in IEEE 802.11 be: On the way to low-latency WiFi 7," Sensors, Vol.21, No.15, 4954, 2021.
  11. O. Moll, A. Zalewski, S. Pillai, S. Madden, M. Stonebraker, and V. Gadepally, "Exploring big volume sensor data with Vroom," 2017.
  12. F. Mihalic, M. Truntic, and A. Hren, "Hardware-in-the-Loop simulations: A historical overview of engineering challenges," Electronics, Vol.11, No.15, 2462, 2022.
  13. S. Chen, Y. Chen, S. Zhang, and N. Zheng, "A novel integrated simulation and testing platform for self-driving cars with hardware in the loop," IEEE Transactions on Intelligent Vehicles, Vol.4, No.3, pp.425-436, https://doi.org/10.1109/tiv.2019.2919470
  14. Y. Chung and Y. P. Yang, "Hardware-in-the-Loop Simulation of Self-Driving Electric Vehicles by Dynamic Path Planning and Model Predictive Control," Electronics, Vol.10, No.19, 2447, 2021.
  15. R. Tornese et al., "Hardware-in-the-loop testing of a maritime autonomous collision avoidance system," 2022 30th Mediterranean Conference on Control and Automation (MED). IEEE, 2022.
  16. K. D. Nguyen, T. T. Nguyen, and C. Ha, "Graph-SLAM based Hardware-in-the-Loop-Simulation for unmanned aerial vehicles using Gazebo and PX4 open source," International Conference on Intelligent Computing, Springer, Cham,
  17. Z. Zhang, W. Yang, Z. Shi, and Y. Zhong, "Hardware-in-the-loop simulation platform for unmanned aerial vehicle swarm system: Architecture and application," 2020 39th Chinese Control Conference (CCC), IEEE, 2020.
  18. S. J. Yun, J. W. Kwon, and W. T. Kim, "A novel digital twin architecture with similarity-based hybrid modeling for supporting dependable disaster management systems," Sensors, Vol.22, No.13, 4774, 2022.
  19. R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, "Deep learning for hybrid 5G services in mobile edge computing systems: Learn from a digital twin," IEEE Transactions on Wireless Communications, Vol.18, No.10, pp.4692-4707, 2019.  https://doi.org/10.1109/TWC.2019.2927312