DOI QR코드

DOI QR Code

S&P Noise Removal Filter Algorithm using Plane Equations

평면 방정식을 이용한 S&P 잡음제거 필터 알고리즘

  • Young-Su, Chung (Department of Intelligent Robot Engineering, Pukyong National University) ;
  • Nam-Ho, Kim (School of Electrical Engineering, Pukyong National University)
  • Received : 2022.11.02
  • Accepted : 2022.11.10
  • Published : 2023.01.31

Abstract

Devices such as X-Ray, CT, MRI, scanners, etc. can generate S&P noise from several sources during the image acquisition process. Since S&P noise appearing in the image degrades the image quality, it is essential to use noise reduction technology in the image processing process. Various methods have already been proposed in research on S&P noise removal, but all of them have a problem of generating residual noise in an environment with high noise density. Therefore, this paper proposes a filtering algorithm based on a three-dimensional plane equation by setting the grayscale value of the image as a new axis. The proposed algorithm subdivides the local mask to design the three closest non-noisy pixels as effective pixels, and applies cosine similarity to a region with a plurality of pixels. In addition, even when the input pixel cannot form a plane, it is classified as an exception pixel to achieve excellent restoration without residual noise.

X-Ray, CT, MRI, 스캐너 등과 같은 장치는 영상 획득 과정 중 여러 원인으로 인해 S&P 잡음을 생성할 수 있다. 영상에 나타난 S&P 잡음은 영상의 품질을 저하시키기 때문에, 영상처리 과정에 잡음제거 기술을 필수적으로 사용해야 한다. S&P 잡음 제거에 관한 연구는 이미 다양한 방법이 제안되었으나, 이들 모두 잡음 밀도가 큰 환경에서는 잔여 잡음을 생성하는 문제점이 있었다. 따라서 본 논문은 영상의 grayscale 값을 새로운 축으로 설정하여 3차원의 평면 방정식을 기반으로 필터링하는 알고리즘을 제안하였다. 제안한 알고리즘은 로컬마스크를 세분화하여 가장 근접한 3개의 비잡음 화소를 유효 화소로 설계하여, 복수의 화소를 가진 영역에 대해 코사인 유사도를 적용하였다. 또한, 입력한 화소가 평면을 이룰 수 없는 경우에도 예외 화소로 분류하여 잔여 잡음 없이 우수한 복원을 이루었다.

Keywords

References

  1. J. Shedbalkar, K. Prabhushetty, and A. Inchalc, "A Comparative Analysis of Filters for Noise Reduction and Smoothening of Brain MRI Images," in Proceedings of 2021 6th International Conference for Convergence in Technology, Maharashtra, India, pp. 1-6, 2021. DOI: 10.1109/I2CT51068.2021.9417979.
  2. R. Gandikota and M. M, "Pixel Noise Localization Algorithm for Indian Satellite Data Quality Control: A Novel Approach," in Proceedings of 2019 8th Mediterranean Conference on Embedded Computing, Kuala Lumpur, Malaysia, pp. 7759-7762, 2022. DOI: 10.1109/IGARSS46834.2022.9883507.
  3. A. M Menon, E. Eldho, G. M Benny, and D. Sudarsan, "A Novel Approach for Noise Removal from Hand Written Manuscript using Enhanced Gibbs Sampling Algorithm," in Proceedings of 2019 International Conference on Wireless Commun cation s Signal Processing and Networking, Chennai, India, pp. 497-500, 2019. DOI: 10.1109/WiSPNET45539.2019.9032758.
  4. P. Zhang and F. Li, "A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise," IEEE Signal Processing Letters, vol. 21, no. 10, pp. 1280-1283, Jun. 2014. DOI: 10.1109/LSP.2014.2333012.
  5. S. Esakkirajan and T. Veerakumar, "Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter," IEEE Signal Processing Letters, vol. 18, no. 5, pp. 287-290, Mar. 2011. DOI: 10.1109/LSP.2011.2122333.
  6. A. Kundu, S. Banerje, C. Sarkar, and S. Barman, "An Axis Based Mean Filter for Removing High-Intensity Salt and Pepper Noise," in Proceedings of 2020 IEEE Calcutta Conference, Kolkata, India, pp. 363-367, 2020. DOI: 10.1109/CALCON49167. 2020.9106561.
  7. R. Li and Y. J. Zhang, "A hybrid filter for the cancellation of mixed Gaussian noise and impulse noise," in Proceedings of Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint15-18, Singapore, pp. 508-512, 2003. DOI : 10.1109 / ICICS.2003.1292504.
  8. B. W. Cheon and N. H. Kim, "A Filter Algorithm based on Partial Mask and Lagrange Interpolation for Impulse Noise Removal," Journal of the Korea Institute of Information and Communication Engineering, vol. 26, no. 5, pp. 675-681, May 2022. DOI: 10.6109/jkiice.2022.26.5.675.
  9. H. Y. Lee and N. H. Kim, "Salt and Pepper Noise Removal using Effective Pixels and Linear Interpolation," Journal of the Korea Institute of Information and Communication Engineering, vol. 26, no. 7, pp. 989-995, Jul. 2022. DOI: 10.6109/jkiice.2022.26.7.989.
  10. B. W. Cheon and N. H. Kim, "High Density Impulse Noise Reduction Filter Algorithm using Effective Pixels," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 10, pp. 1320-1326, Oct. 2018. DOI: 10.6109/jkiice.2018.22.10.1320.