DOI QR코드

DOI QR Code

Low-complexity Sensor Selection Based on QR factorization

QR 분해에 기반한 저 복잡도 센서 선택 알고리즘

  • Yoon Hak, Kim (Department of Electronic Engineering, Chosun University)
  • Received : 2022.10.22
  • Accepted : 2022.11.16
  • Published : 2023.01.31

Abstract

We study the problem of selecting a subset of sensor nodes in sensor networks in order to maximize the performance of parameter estimation. To achieve a low-complexity sensor selection algorithm, we propose a greedy iterative algorithm that allows us to select one sensor node at a time so as to maximize the log-determinant of the inverse of the estimation error covariance matrix without resort to direct minimization of the estimation error. We apply QR factorization to the observation matrix in the log-determinant to derive an analytic selection rule which enables a fast selection of the next node at each iteration. We conduct the extensive experiments to show that the proposed algorithm offers a competitive performance in terms of estimation performance and complexity as compared with previous sensor selection techniques and provides a practical solution to the selection problem for various network applications.

센서 네트워크에서 평균 추정성능을 높이기 위한 저 복잡도를 갖는 센서 노드 선택 알고리즘에 대해 연구한다. 복잡도를 줄이기 위해 직접적인 비용함수인 평균 추정오차를 최소화 하는 대신, 평균 추정오차 공분산 역행렬의 로그행렬식을 비용함수로 채택하고 이를 최대화하는 센서 노드 집합을 선택하기 위한 탐욕적 반복 알고리즘을 제안한다. 비용함수에 있는 관측행렬에 QR분해를 적용하여 단계마다 한 개의 노드를 선택하기 위한 저 복잡도를 갖는 수학적관계식을 유도한다. 다양한 실험을 통해, 추정성능 및 복잡도면에서 기존의 센서 노드 선택기술 대비 제안 알고리즘이 경쟁력있는 성능을 보임을 입증하고 실용적 센서 노드 선택기술로써 다양한 네트워크시스템에 적용할 수 있는 대안을 제시한다.

Keywords

Acknowledgement

This study was supported by research fund from Chosun University, 2022.

References

  1. S. Joshi and S. Boyd, "Sensor Selection via Convex Optimization," IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 451-462, Feb. 2009. DOI: 10.1109/TSP.2008.2007095.
  2. J. Ranieri, A. Chebira, and M. Vetterli, "Near-Optimal Sensor Placement for Linear Inverse Problems," IEEE Transactions on Signal Processing, vol. 62, no. 5, pp. 1135-1146, Mar. 2014. DOI: 10.1109/TSP.2014.2299518.
  3. M. Shamaiah, S. Banerjee, H. Vikalo, "Greedy sensor selection: Leveraging submodularity," in Proceedings of IEEE International Conference on Decision and Contron (CDC), Atlanta: GA, USA, pp. 2572-2577, 2010. DOI: 10.1109/CDC.2010.5717225.
  4. C. Jiang, Y. C. Soh, and H. Li, "Sensor Placement by Maximal Projection on Minimum Eigenspace for Linear Inverse Problems," IEEE Transactions on Signal Processing, vol. 64, no. 21, pp. 5595-5610, Nov. 2016. DOI: 10.1109/TSP.2016.2573767.
  5. Y. H. Kim, "Greedy sensor selection based on QR factorization," EURASIP journal on Advances in Signal Processing, vol. 2021, no. 117, pp. 1-13, Dec. 2021. DOI: 10.1186/s13634-021-00824-5.
  6. A. Anis, A. Gadde, and A. Ortega, "Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies," IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775-3789, Jul. 2016. DOI: 10.1109/TSP.2016.2546233.
  7. L. F. O. Chamon and A. Ribeiro, "Greedy Sampling of Graph Signals," IEEE Transactions on Signal Process, vol. 66, no. 1, pp. 34-47, Jan. 2018. DOI: 10.1109/TSP.2017.2755586.
  8. Y. H. Kim, "Low-complexity Sampling Set Selection for Bandlimited Graph Signals," Journal of the Korea Institute of Information and Communication Engineering, vol. 24, no. 12, pp. 1688-1693, Dec. 2020. DOI: 10.6109/jkiice.2020.24.12.1682.
  9. Y.H. Kim, "QR factorization-based sampling set selection for bandlimited graph signals," Signal Processing, vol. 179, pp. 1-10, Feb. 2021. DOI: 10.1016/j.sigpro.2020.107847.
  10. Y. H. Kim, "Efficient Sampling of Graph Signals with Reduced Complexity," Journal of the Korea Institute of Electronic Communication Science, vol. 17, no. 2, pp. 367-374, Apr. 2022. DOI: 10.13067/JKIECS.2022.17.2.367.